Номер части:
Журнал

DEVELOPMENT A SYSTEM FOR CLASSIFYING AND RECOGNIZING PERSON’S FACE (15-24)



Науки и перечень статей вошедших в журнал:


DOI: 10.31618/ESU.2413-9335.2020.4.73.677
Дата публикации статьи в журнале: 2020/05/12
Название журнала: Евразийский Союз Ученых, Выпуск: 73, Том: 4, Страницы в выпуске: 15-24
Автор: Boranbayev S.N.
Nur-Sultan, Kazakhstan , L.N.Gumilyov Eurasian National University,
Автор: Amirtayev M.S.
Nur-Sultan, Kazakhstan , L.N.Gumilyov Eurasian National University,
Автор:
, ,
Анотация: The purpose of this article is to summarize the knowledge gained in the development and implementation of a neural network for facial recognition. Neural networks are used to solve complex tasks that require analytical calculations similar to what the human brain does. Machine learning algorithms are the foundation of a neural network. As input, the algorithm receives an image with people's faces, then searches for faces in this image using HOG (Histogram of oriented gradients). The result is images with explicit face structures. To determine unique facial features, the Face landmark algorithm is used, which finds 68 special points on the face. These points can be used to center the eyes and mouth for more accurate encoding. To get an accurate “face map” consisting of 128 dimensions, you need to use image encoding. Using the obtained data, the convolutional neural network can determine people's faces using the SVM linear classifier algorithm.
Данные для цитирования: Boranbayev S.N. Amirtayev M.S. . DEVELOPMENT A SYSTEM FOR CLASSIFYING AND RECOGNIZING PERSON’S FACE (15-24) // Евразийский Союз Ученых. Технические науки. 2020/05/12; 73(4):15-24. 10.31618/ESU.2413-9335.2020.4.73.677



Список литературы: 1.Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection [Electronic source] // URL: http://lear.inrialpes.fr/people/triggs/pubs/Dalalcvpr05.pdf. 2."Extract HOG Features". [Electronic source] URL: https://www.mathworks.com/help/vision/ref/extractho gfeatures.html 3.M. Yang, N. Ahuja and D. Kriegman. Face recognition using kernel eigenfaces. Image Processing: IEEE Transactions - 2000. - Vol.1. pp. 37- 40 4.V. Kazemi and S. Josephine. One millisecond face alignment with an ensemble of regression trees. In CVPR, 2014. [Electronic source] // URL: http://www.csc.kth.se/~vahidk/papers/KazemiCVPR1 4.pdf. 5.Facial recognition. [Electronic source] URL: https://ai.nal.vn/facial-recognition/ 6.F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In Proc. CVPR, 2015. [Electronic source] // URL: https://www.cvfoundation.org/openaccess/content_cvpr_2015/app/1A _089.pdf. 7.Neha Rudraraju, Kotoju Rajitha, K. Shirisha, Constructing Networked, Intelligent and Adaptable Buildings using Edge Computing [Electronic source] // URL: http://ijrar.com/upload_issue/ijrar_issue_20542753.pd f 8.Dalal N., Triggs B. Histograms of Oriented Gradients for Human Detection // Proc. of the IEEE Conference Computer Vision and Pattern Recognition. 2005. pp. 886–893. 9.Christopher M. Bishop F.R.Eng. Pattern Recognition and Machine Learning. [Electronic source] // URL: https://goo.gl/WLqpHN. 10. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition [Electronic source] // URL: https://arxiv.org/abs/1512.03385 11. Face recognition [Electronic source] // URL: https://github.com/ageitgey/face_recognition 12. Howse J. OpenCV Computer vision with Python. – Packt Publishing Ltd., UK. 2013. 13. Riaz Ullah Khan, Xiaosong Zhang, Rajesh Kumar. Analysis of ResNet and GoogleNet models for malware detection [Electronic source] // URL: https://www.researchgate.net/publication/327271897_ Analysis_of_ResNet_and_GoogleNet_models_for_ma lware_detection


Записи созданы 2523

Похожие записи

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх