Номер части:
Журнал
ISSN: 2411-6467 (Print)
ISSN: 2413-9335 (Online)
Статьи, опубликованные в журнале, представляется читателям на условиях свободной лицензии CC BY-ND

SYNTHESIS OF GOLD NANOPARTICLES VIA CITRATE REDUCTION AND THEIR CHARACTERIZATION (34-42)



Науки и перечень статей вошедших в журнал:
DOI: 10.31618/ESU.2413-9335.2019.3.69.492
Дата публикации статьи в журнале: 2020/01/11
Название журнала: Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале, Выпуск: 69, Том: 3, Страницы в выпуске: 34-42
Автор: Amanmadov A.
, ,
Автор: Durdyyev R.
, ,
Автор: Kotyrov M.
, ,
Анотация: In this work, colloidal gold nanoparticles (GNPs) were synthesized by the chemical reduction of an acid solution of tetrachloroauric acid (HAuCl4) as a precursor with a base solution of sodium citrate (Na3C6H5O7) as a reducing agent at 80-100℃. In the literature, this method is known as the Turkevich method. UV-Vis spectrometry and Dynamic Light Scattering (DLS) were used to obtain the absorption spectra and the hydrodynamic radii of the prepared gold nanoparticles with their size distribution. The colloidal stability of the samples was obtained via Zeta potential (?) measurements. It was ascertained that the final size of colloidal gold nanoparticles varies with the initial value of the citrate-to-gold molar ratio. Moreover, it is shown that the terminal size of colloidal gold nanoparticles could be reduced significantly at the specific molar ratio
Ключевые слова: gold nanoparticles, tetrachloroauric acid,citrate reduction method,particle size,zeta potential,absorption spectra,
Данные для цитирования: Amanmadov A. Durdyyev R. Kotyrov M.. SYNTHESIS OF GOLD NANOPARTICLES VIA CITRATE REDUCTION AND THEIR CHARACTERIZATION (34-42) // Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале. Химические науки. 2020/01/11; 69(3):34-42. 10.31618/ESU.2413-9335.2019.3.69.492

Список литературы: [1]. Su XY, Liu PD, Wu H, et al., 2014. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol Med, 11, 86-91. [2]. Daniel M-C, Astruc D, 2004. Chem Rev (Washington, DC, U S) 104:293–346 [3]. Fathi-Azarbayjani A, Qun L, Chan YW, et al., 2010. AAPS PharmSciTech 11:1164–1170 [4]. Lee J-S, Cho J, Lee C, et al., 2007. Nat Nano 2:790–795 [5]. Bowman M-C, Ballard TE, Ackerson CJ, et al., 2008. J Am Chem Soc 130:6896–6897 [6]. Daniel M-C, Grow ME, Pan H-M, et al., 2011. New J Chem 35:2366–2374 [7]. Bresee J, Maier KE, Boncella AE, et al., 2011. Small 7:2027–2031 [8]. Hainfeld JF, Slatkin DN, Focella TM, et al., 2006. Br J Radiol 79:248–253 [9]. Ghann WE, Aras O, Fleiter T, et al., 2012. Langmuir 28:10398–10408 [10]. Boisselier E, Astruc D, 2009. Chem Soc Rev 38:1759–1782 [11]. Bresee J, Maier KE, Melander C, et al., 2010. Chem Commun (Cambridge, U K) 46:7516–7518 [12]. Xia T, Kovochich M, Brant J, et al., 2006. Nano Lett 6:1794–1807 [13]. Dreher KL, 2004. Toxicol Sci 77:3–5 [14]. Dreifuss T, Betzer O, Shilo M, et al., 2015. A challenge for theranostics: is the optimal particle for therapy also optimal for diagnostics? Nanoscale, 7, 15175. [15]. Kang B, Mackey MA, El-Sayed MA, 2010. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc. Feb 10;132(5):1517-9. [16]. C. Mallon, B. Jose, R. Forster, et al., 2010. Chem. Commun. 46, 106-108. [17]. G.H. Lin, W.S. .Lu, W.J. Cui, et al., 2010. Crystal Growth Des. 10, 1118-1123. [18]. W. Schwinger, E. Lausecker, I. Bergmair, et al., 2008. Microelect. Eng. 85 1346-1349. [19]. C.L. Haynes, R.P. Van Duyne, 2001. J. Phys. Chem. B 105, 5599-5611. [20]. R.C. Jin, Y.W. Cao, C.A. Mirkin, 2001. Science 294. [21]. Zhou W, Gao X, Liu D, et al., 2015. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 115 (19), 10575–10636. https://doi.org/10.1021/acs.chemrev.5b00100. [22]. Yang, X, Yang, M, Pang, B, et al., 2015. Gold nanomaterials at work in biomedicine. Chem. Rev. 115 (19), 10410–10488. https://doi.org/10.1021/acs.chemrev.5b00193. [23]. Nguyen N L, Le V V, Chu D K, et al., 2009. J. Phys.: Conf. Ser. 187 012026 [24]. L. C. Courrol, F. R. Silva, and L. Gomes, 2007. Colloids and Surfaces A 305, 54 (2007). doi: 10.1016/j.colsurfa.04.052 [25]. Zhang Z, Jia J, Ma Y, 2011. Med. Chem. Commun. 2 1079 [26]. Lia T, Parka H G, Choi S H, 2007. Mater. Chem. Phys. 105 325 [27]. T. Tsuji et al., 2013. Phys. Chem. Chem. Phys. 15, 3099. doi: 10.1039/c2cp44159d [28]. R. K. Das, B. B. Borthakur, and U. Bora, 2010. Mater. Lett. 64, 1445. [29]. Y, Wang, X. He, K. Wang, et al., 2009. Colloids Surf. B 73, 75. [30]. G. Singaravelu, J. S. Arockimary, V. G. Kumar, et al., 2007. Colloids. Surf. B 57, 97. [31]. P. Mukherjee, S. Senapati, D. Mandal, et al., 2002. Chem. Bio. Chem. 5, 461. [32]. B. T. Zhang, W. Wang, D. Zhang, et al., 2010. Adv. Funct. Mater. 20, 1152. [33]. D. Mandal, M. E. Bolander, D. Mukhopadhyay, et al., 2006. Appl. Microbiol. Biotechnol. 69, 485. [34]. K. R. Brown, D. G. Walter, M. J. Natan, 2000. Chem. Mater., 12, 306. [35]. K. B. Male, J. J. Li, C. C. Bun, et al, 2008. 112, 443. [36]. S. Meltzer, R. Resch, B. E. Koel, et al., 2001. Langmuir, 17, 1713. [37]. L. Y. Cao, T. Zhu, Z. F. Liu, J., 2006. Colloid Interface Sci. , 293, 69. [38]. D. V. Goia, E. Matijevic, 1999. Colloids Surf., A, 146, 139. [39]. N. R. Jana, L. Gearheart, C. J. Murphy, 2001. Chem. Mater., 13, 2313 [40]. M. Faraday, 1857. Experimental relations of gold (and other metals) to light, Philos. Trans. R. Soc. 147 145–181. [41]. G. Frens, 1973. Controlled nucleation for the regulation of particle size in monodisperse gold suspenions, Nature 241, 20. [42]. Turkevich J, Stevenson P C, Hillier J, 1951. Discuss. Faraday Soc. 11 55 [43]. Ji, X.H., Song, X.N., Li, J., et al., 2007. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129, 13939. [44]. Kumar, S., Kumar, R., Gandhi, K.S., 2007. Modeling of formation of gold nanoparticles by citrate method. Ind. Eng. Chem. Res. 46, 3128–3136. https://doi.org/10.1021/ie060672j. [45]. Agunloye, E., Panariello L., Gavriilidis, A., et al., 2018. A model for the formation of gold nanoparticles in the citrate synthesis method. Chem. Eng. Sci. 191, 318–331. https://doi.org/10.1016/j.ces.2018.06.046 [46].Wuithschick, M., Witte, S., Kettemann, F., et al., 2015. Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. Phys. Chem. Chem. Phys. 17, 19895–19900. https://doi.org/10.1021/acsnano.5b01579.


Записи созданы 9819

Похожие записи

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх
404: Not Found404: Not Found