Номер части:
|
|||||||||||||
Журнал
|
ISSN: 2411-6467 (Print)
ISSN: 2413-9335 (Online)
Статьи, опубликованные в журнале, представляется читателям на условиях свободной лицензии CC BY-ND
ISSN: 2413-9335 (Online)
Статьи, опубликованные в журнале, представляется читателям на условиях свободной лицензии CC BY-ND
THE STABILITY OF THIN-WALLED OPEN- PROFILE BARS WITHIN THE NONLINEAR ELASTIC DEFORMATION (52-59)
Науки и перечень статей вошедших в журнал:
DOI:
Дата публикации статьи в журнале: 2020/01/11
Название журнала: Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале, Выпуск:
69, Том: 5,
Страницы в выпуске: 52-59
Анотация: The paper considers researches dealing with the stability of thin-walled open-profile bars. The widespread use of thin-walled bars in engineering constructions is resulted in a significant reduction in the weight of these systems. Considering the relevance of the given problem, the stability of nonlinear deformation to the central axis direction of the thin-walled bars has been investigated. The physical nonlinearity of the bar’s material, dependence of the normal tension in its cross-section on the relative linear deformation has been taken as the form of the dual cubic polynomial. An appropriate nonlinear differential complex equation for a single torsion angle has been composed for the determination of the normal and touching tensions at bar’s cuts in the non-free torsion of the longitudinal compression of the bar subjected to nonlinear deformations, and free touch tensions in free torsion towards the direction of the thickness of the bar. In order to use the small parameter method for the solution of this differential equation, the small parameter expression is composed of the elastic characteristics of the bar material. The solution line of the form of the nonlinear differential equation due to the small number of parameters is divided into differential equations, so that their solution is easily carried out. As a result, the expression of thin-walled bar’s tension is obtained in the third approximation.
Ключевые слова:
Thin-walled bar,
nonlinear deformation,open -profile,deplanation,non-free torsion,bending,curling moment,sectorial field,sustainability,
Данные для цитирования: . THE STABILITY OF THIN-WALLED OPEN- PROFILE BARS WITHIN THE NONLINEAR ELASTIC DEFORMATION (52-59) // Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале.
Технические науки.
2020/01/11;
69(5):52-59.
Список литературы: [1] Vlasov V. Thin-walled elastic beams.2nd ed. Springfield, Va.: National Technical Information Service; 1984.
[2] Peres N, Goncalves R, Camotim D. First-order generalized beam theory for curved thin-walled members with circular axis. Thin-Walled Structures
2016; vol.107: 345-361. DOI:
10.1016/j.tws.2016.06.016
[3] Fouzi MSM. Jelani KM. Nazri NA. Sani MSM. Finite Element Modelling and Updating of Welded Thin-Walled Beam. International Journal of Automotive and Mechanical Engineering 2018; 15(4): 5874-5889. DOI: 10.1007/s40430-018-1475-z
[4] Bebiano R, Eisenberger M, Camotim D, Goncalves R. GBT-Based Buckling Analysis Using the Exact Element Method. International Journal of Structural Stability and Dynamics 2017; 17(10):
17501255. DOI: 10.1142/s0219455417501255 [5] Ronaldo I, Borja. Plasticity. Springer, Berlin; 2013.
[6] Rousselier G, Quilici S. Combining porous plasticity with Coulomb and Portevin-Le Chatelier models for ductile fracture analyses. International Journal of Plasticity 2015; vol.69: 118-133. DOI: 10.1016/j.ijplas.2015.02.008
[7] Walter L. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling.
Springer US; 2013.
[8] Leipholz U. Theory of elasticity, Springer Netherlands; 2014.
[9] Pastor MM, Bonada J, Roure F, Casafont M. Residual stresses and initial imperfections in non-linear analysis. Engineering Structures 2013; vol.46:493-507. DOI: 10.1016/j.engstruct.2012.08.013
[10]Sadigov IR Phisical nonlinear elastic deformations of smooth ring. Transactions of NAS of Azerbaijan 2016; vol. 36:74–80.
[11]Zhang RJ, Wang C, Zhang Q. Response analysis of the composite random vibration of a highspeed elevator considering the nonlinearity of guide shoe. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018; vol.40: 4.