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ABSTRACT 

The paper considers researches dealing with the stability of thin-walled open-profile bars. The widespread 

use of thin-walled bars in engineering constructions is resulted in a significant reduction in the weight of these 

systems. Considering the relevance of the given problem, the stability of nonlinear deformation to the central axis 

direction of the thin-walled bars has been investigated. The physical nonlinearity of the bar’s material, dependence 

of the normal tension in its cross-section on the relative linear deformation has been taken as the form of the dual 

cubic polynomial. An appropriate nonlinear differential complex equation for a single torsion angle has been 

composed for the determination of the normal and touching tensions at bar’s cuts in the non-free torsion of the 

longitudinal compression of the bar subjected to nonlinear deformations, and free touch tensions in free torsion 

towards the direction of the thickness of the bar. In order to use the small parameter method for the solution of this 

differential equation, the small parameter expression is composed of the elastic characteristics of the bar material. 

The solution line of the form of the nonlinear differential equation due to the small number of parameters is divided 

into differential equations, so that their solution is easily carried out. As a result, the expression of thin-walled 

bar’s tension is obtained in the third approximation.  

Keywords: Thin-walled bar, nonlinear deformation, open -profile, deplanation, non-free torsion, bending, 

curling moment, sectorial field, sustainability. 

  

INTRODUCTION 

The tap of the thin-walled bars in different 

constructions, especially in shipbuilding, aviation 

industry, and construction of high-mile buildings, etc., 

caused a creation of the new computation theory. The 

famous scientist, Vlasov’s fundamental works had an 

irreplaceable role in the sphere of the creation and 

development of this theory [1]. Taking into account that 

the thin-walled bars squeezed in the longitudinal 

direction are problematic ones, the significant 

investigations of Peres N., Goncalves R., Camotim D. 

and others along with Vlasov’s survey had a great 

impact on their work on calculations for sustainability 

[2-4, 9].  

Unlike the closed contoured or the whole cut thin-

walled bars, the open-profile bars are slightly resistant 

to torsion. According to the general theory of open 

profile thin-walled bars, in the torsion of such bars their 

cuts are bent, thus various points take different 

movements in the direction of the central longitudinal 

axis of the bar. Such longitudinal displacements are 

called deplanation.  

PROBLEM STATEMENT 

If the deplanation of the cuts of the bar doesn’t 

occur freely, it implies that normal tensions arise in 

non-free torsion. In this case touch tensions also arise 

in the points of the cut of the bar. These touching 

tensions are indicated as 𝜏𝑞.𝑠., they are accepted like 

regularly disseminated in wall thickness of the shaft 

[1]. In the free torsion the tensile stresses varying by 

linear law in the direction of bar thickness are called 

free touching tensions, and are indicated as 𝜏𝑠 (see Fig. 

1). 

 

а)   b)  

    
 Figure 1. The touching tensions. 

 a) Non-free torsion ; b) Free torsion 

 

When we indicate the momentum that is born of 

internal touch forces in the free torsion with 𝑀𝑏, and 

the momentum that is born of touch forces in the non-

free torsion with 𝑀𝑏, the full torque momentum is taken 

as follows: 

 

𝑀𝑏 = 𝑀𝑏 +𝑀𝑏    (1) 
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The shift (deplanation) u of any point of the cut of 

the bar to the longitudinal axis x can be taken as follows 

[2]:  

 

𝑢 = −𝛼(𝑥) ⋅ 𝜔(𝑠),   (2) 

 

here 𝛼(𝑥) − is the relative torsional angle of bar , 

which is the function of x variable, 𝜔(𝑠) −is the 

sectorial area of S function. Sectorial area as rotation of 

radius-vector that takes its beginning from any polar 

point k is assumed as double area resulting from the 

movement of the last (the second) point on the middle 

line of the bar wall (Fig. 2). 

 

 
 Figure 2. The sectorial area. 

  

The negative symbol in Eq. (2) indicates the 

counterclockwise rotation of the radius-vector. 

Considering that the bar material is non-linear elastic, 

we find normal tension in its most extreme non-free 

torsion in the cut of the bar as follows [5]: 

𝜎𝑥 = 𝐸𝑜𝜀𝑥 − 𝐸1𝜀𝑥
3,  (3) 

here 𝐸𝑜, 𝐸1 − are elastic constants of the bar 

material, 𝜀𝑥 is the relative longitudinal linear 

deformation. 

Choosing the Method of Solution 

Let’s make the last expression as follows: 

 𝜎𝑥 = 𝐸𝑜𝜀𝑥(1 − 𝑣𝛽𝜀𝑥
2),  (4) 

here 𝑣 =
𝐸1

𝐸𝑜
𝜀𝑚.ℎ.
2 − is the small parameter drawn 

from the elasticity of the bar material  

(𝑣 < 1),  𝛽 = 1 𝜀𝑚.ℎ.
2⁄ , 𝜀𝑚.ℎ. − is the relative 

deformity of the material due to the range of the 

tolerance of the material [6]. 

Using Koshi dependences and considering Eq. (2), 

we can write the following: 

 𝜀𝑥 = −
𝑑𝛼(𝑥)

𝑑𝑥
⋅ 𝜔(𝑠),   (5) 

here the single torsion angle 𝛼(𝑥) equals to 

derivative of 𝜃 − through x variable: 

 

𝛼 = −
𝑑𝜃

𝑑𝑥
 

 

Taking into account the last equation, we can 

substitute Eq. (5) with Eq. (4) and have: 

 𝜎𝑥 = −𝐸𝑜 [
𝑑2𝜃

𝑑𝑥2
𝜔(𝑠) − 𝑣𝛽 (

𝑑2𝜃

𝑑𝑥2
)
3

⋅ (𝜔(𝑠))
3
]  (6) 

Considering the following equilibrium Eq. (6) we determine the touching tensions: 
∂𝜎𝑥

∂𝑥
+

∂𝜏

∂𝑠
= 0, from here 

𝜏 = −∫
𝑠

0

∂𝜎𝑥

∂𝑥
𝑑𝑠 = 𝐸𝑜 [

𝑑3𝜃

𝑑𝑥3
∫
𝑠

0
𝜔𝑑𝑠 − 𝑣𝛽 ⋅

𝑑

𝑑𝑥
(
𝑑2𝜃

𝑑𝑥2
)
3

∫
𝑠

0
(𝜔(𝑠))

3
𝑑𝑠]  (7) 

We take the last equation and multiply it with the thickness of the bar wall t and get the intensity of the flood 

of the forces touching along its wall: 

 𝜏𝑡 = −∫
𝑠

0

∂𝜎𝑥

∂𝑥
𝑡𝑑𝑠 = 𝐸𝑜 [

𝑑3𝜃

𝑑𝑥3
∫
𝑠

0
𝜔𝑡𝑑𝑠 − 𝑣𝛽 ⋅

𝑑

𝑑𝑥
(
𝑑2𝜃

𝑑𝑥2
)
3

∫
𝑠

0
(𝜔(𝑠))

3
𝑡𝑑𝑠]  (8)  

In Eq. (8) we mark 𝑡𝑑𝑠 = 𝑑𝐹 and𝜏 ⋅ 𝑡 = 𝑞, but 

integrals are indicated as follows: 

−𝑆𝜔 = ∫
𝑠

0
𝜔𝑑𝐹 − sectorial static momentum 

(unit of measurement sm4), 

−𝐽𝜔 = ∫
𝑠

0
𝜔2𝑑𝐹 − sectorial inertial momentum 

(unit of measurement sm6). 

Considering these signs, we make Eq. (8) in the 

following form [7]: 
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𝑞 = 𝐸𝑜 [
𝑑3𝜃

𝑑𝑥3
𝑆𝜔 − 𝑣𝛽 ⋅

𝑑

𝑑𝑥
(
𝑑2𝜃

𝑑𝑥2
)
3

⋅ ∫
𝐹

𝜔3𝑑𝐹]  (9) 

We define the 𝑀𝑏 momentum due to arrow 

passing through the k pole of the tensile forces in the 

non-free torsion. As it is seen from Fig. 3, sm6 is polar 

momentum of elemental force 𝑞𝜌𝑑𝑠 = 𝑞 ⋅ 𝑑𝜔 (here 

𝑑𝜔 = 𝜌𝑑𝑠 − is the growth of the sectorial area). 

 

 
Figure 3. Determination of momentum of the touched force. 

 

Momentum alternative 𝑀𝑏 is written as follows: 

𝑀𝑏 = ∫
𝐹

𝑞𝑑𝜔 = 𝐸𝑜 [
𝑑3𝜃

𝑑𝑥3
∫
𝐹

𝑑𝜔 ∫
𝐹

𝜔𝑑𝐹 − 𝑣𝛽 ⋅
𝑑

𝑑𝑥
(
𝑑2𝜃

𝑑𝑥2
)
3

⋅ ∫
𝐹

𝑑𝜔 ∫
𝑠

0
𝜔3𝑑𝐹],  

here integration is carried out on all F areas. 

We get this equation through partial integration: 

 𝑀𝑏 = 𝐸𝑜 [
𝑑3𝜃

𝑑𝑥3
(𝜔 ∫

𝐹
𝜔𝑑𝐹 − 𝐽𝜔) − 𝑣𝛽 ⋅

𝑑

𝑑𝑥
(
𝑑2𝜃

𝑑𝑥2
)
3

⋅ (𝜔 ∫
𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹)]  (10) 

In the definition of the sectorial area the starting position of the radius-vector is determined by the fact that 

the exact sectorial static momentum of the field is zero, that is: 

 𝑆𝜔.𝐹 = ∫
𝐹

𝜔𝑑𝐹 = 0  (11) 

Realization of the Method 

Taking into consideration the above-mentioned symbols, we put Eq. (10) in this form: 

𝑀𝑏 = −𝐸𝑜 [𝐽𝜔 ⋅
𝑑3𝜃

𝑑𝑥3
− 𝑣𝛽 ⋅

𝑑

𝑑𝑥
(
𝑑2𝜃

𝑑𝑥2
)
3

⋅ (𝜔 ∫
𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹)]  (12) 

We can write the momentum of the tensile forces of the profile that are created by the free torsion as follows: 

 𝑀𝑏 = 𝐺𝐽𝑘 ⋅
𝑑𝜃

𝑑𝑥
  (13) 

here GJk is rigidity of profile in torsion, Jk is inertia momentum of torsion. We can write the equation in the 

following way (if profile consists of rectangle): 

 𝐽𝑘 =
1

3
𝜂 ∑𝑛𝑖=1 𝑠𝑖 ⋅ 𝑡𝑖

3,  (14) 

here Si is the length of the i small wall, ti is the thickness, and 𝜂 − is the ratio that is the basis of the shape of 

the cut. The unit of Jk measurement is sm4. 

According to Eq. (1) the general torsional momentum equals to the sum of Eq. (12) and Eq. (13): 

 𝑀𝑏 = −𝐸𝑜 [𝐽𝜔 ⋅
𝑑3𝜃

𝑑𝑥3
− 𝑣𝛽 ⋅

𝑑

𝑑𝑥
(
𝑑2𝜃

𝑑𝑥2
)
3

⋅ (𝜔 ∫
𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹)] + 𝐺𝐽𝑘
𝑑𝜃

𝑑𝑥
 (15) 
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This equation (Eq. 15) is the nonlinearial 

differential equation of the non-free torsion of the open 

profile thin-walled bar.  

Let’s express touching forces with the following 

new B(x) function of the momentum of the torsional 

forces in non-free torsion: 

 
𝑑𝐵

𝑑𝑥
= 𝑀𝑏  (16) 

here B is called bending – torsional bimoment 

(bumper), or simply bimoment, its unit of measurement 

is kN-sm2. 

In the process of comparing Eq. (6) and Eq. (12) 

we get: 

 𝑀𝑏 =
𝑑𝜎𝑥

𝑑𝑥
⋅
𝐽𝜔

𝜔
  (17) 

While comparing Eq. (16) and Eq. (17) we get: 

𝜎𝑥 =
𝐵⋅𝜔

𝐽𝜔
   (18) 

We can see from here that, the normal tensions in 

the non-free torsion are proportional to the bimoment, 

and while it is𝜎𝑥 = 0, 𝐵 = 0 is obtained. 

 

Placing Eq. (16) in Eq. (12) we integrate according to x and get the following: 

 𝐵 = −𝐸𝑜 [𝐽𝜔 ⋅
𝑑2𝜃

𝑑𝑥2
− 𝑣𝛽 (

𝑑2𝜃

𝑑𝑥2
)
3

⋅ (𝜔 ∫
𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹)]   (19) 

We differentiate both sides of Eq. (15) according to x and get: 

𝐸𝑜 [𝐽𝜔 ⋅
𝑑4𝜃

𝑑𝑥4
− 𝑣𝛽 ⋅

𝑑2

𝑑𝑥2
(
𝑑2𝜃

𝑑𝑥2
)
3

⋅ (𝜔 ∫
𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹)] − 𝐺𝐽𝑘
𝑑2𝜃

𝑑𝑥2
=

𝑑𝑀𝑏

𝑑𝑥
= 𝑚𝑏 ,  (20) 

 

Here mb is the intensity of the external bending 

forces and we accept it as a positive quantity, because 

Mb decreases while the value of x increases. 

First of all, let’s look at the existence form of the 

two symmetry arrows of the bar cut (double-headed 

form) (Fig. 4, a). Such bar with length of l is influenced 

by the squeezing P force in the direction of the centre 

axis x [7]. 

 

 
D-the centre of bending 

Figure 4. a) Double-headed cut; b) About computing the torque of the squeezing force. 

 

Let’s assume that all the longitudinal fibers except 

the central fibers are bending from the given force (to 

the direction of x arrow), i.e. the form of the loss of the 

tolerance in the torsion of the bar. When looking 

through the free edge of the bar at the x arrow we accept 

that the positive direction of the 𝜃 rotation angle of any 

cut of the bar is turning counterclockwise [8]. 

Before deformation, accepting the fact that dF 

elemental pitch fits to any fiber in the cut of the bar 

parallel to x axis, after the torsion the bending radius of 

the very fiber will have the curve shape on the surface 

of the 𝜌circular cylinder (Fig. 4, b). Let’s mark the 

vertical fiber and angle of the touch to this curve with𝜓. 

The 𝜎 ⋅ 𝑑𝐹 elemental force that effects the fiber is 

spinning like 𝜓 angle, creating the momentum around 

the x arrow, will also be expressed as 𝜎𝜓𝜌𝑑𝐹, and the 

intensity of the full torque momentum will be expressed 

as follows: 

 𝑚𝑏 = −∫
𝐹

𝜎
𝑑𝜓

𝑑𝑥
 𝜌 𝑑𝐹,   (21) 

or considering that 𝜌𝑑𝜃 = 𝜓𝑑𝑥 it will be like: 

𝑚𝑏 = −𝜎
𝑑2𝜃

𝑑𝑥2
∫
𝐹

 𝜌2 𝑑𝐹 = −𝜎
𝑑2𝜃

𝑑𝑥2
𝐽𝑝,  (22) 

here Jp is the polar inertia momentum due to the 

centre of the cut. Writing Eq. (22) for Eq. (20), we get 

the following nonlinear differential equation [10,11]: 
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𝐸𝑜 [𝐽𝜔 ⋅
𝑑4𝜃

𝑑𝑥4
− 𝑣𝛽 ⋅

𝑑2

𝑑𝑥2
(
𝑑2𝜃

𝑑𝑥2
)
3

⋅ (𝜔 ∫
𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹)] + (𝜎𝐽𝑝 − 𝐺𝐽𝑘)
𝑑2𝜃

𝑑𝑥2
= 0, (23) 

We solve this complex differential equation by using the small parameters method. For this purpose we put 

Eq. (23) in the following form: 

𝑑4𝜃

𝑑𝑥4
− 𝑣

𝛽

𝐽𝜔
⋅
𝑑2

𝑑𝑥2
(
𝑑2𝜃

𝑑𝑥2
)
3

(𝜔 ∫
𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹) +
𝜎⋅𝐽𝑝−𝐺𝐽𝑘

𝐸𝑜𝐽𝜔
⋅
𝑑2𝜃

𝑑𝑥2
= 0  (23′) 

We take the solution of the last equation in the following order for a small parameter: 

𝜃 = 𝜃𝑜 + 𝑣𝜃1+. . . = ∑
∞
𝑛=0 𝑣𝑛𝜃𝑛  (𝑛 ≥ 0)  (a)  

We write (a) in the same equation and obtain the following linear differential equation system (the first two 

equations of the system were shown): 

 
𝑑4𝜃𝑜

𝑑𝑥4
+

𝜎𝑏(𝑜)⋅𝐽𝑝−𝐺𝐽𝑘

𝐸𝑜𝐽𝜔
⋅
𝑑2𝜃𝑜

𝑑𝑥2
= 0   (24) 

 
𝑑4𝜃1

𝑑𝑥4
+

𝜎𝑏(𝑜)⋅𝐽𝑝−𝐺𝐽𝑘

𝐸𝑜𝐽𝜔
⋅
𝑑2𝜃1

𝑑𝑥2
=

𝛽

𝐽𝜔
⋅
𝑑2

𝑑𝑥2
(
𝑑2𝜃𝑜

𝑑𝑥2
)
3

(𝜔 ∫
𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹) (25) 

The following substitution was accepted in Eq. (24): 

 
𝜎𝑏(𝑜)⋅𝐽𝑝−𝐺𝐽𝑘

𝐸𝑜𝐽𝜔
= 𝑘𝑜

2, (26) 

We obtain its solution through the following way: 

 

 
𝑑2𝜃𝑜

𝑑𝑥2
= 𝐶1 𝑠𝑖𝑛 𝑘𝑜 𝑥 + 𝐶2 𝑐𝑜𝑠 𝑘𝑜 𝑥   (27) 

Since the boundary conditions are  

 

𝐶2 = 0, 𝐶2 ≠ 0 

 

we get 𝑠𝑖𝑛 𝑘𝑜 𝑙 = 0; 𝑘𝑜𝑙 = 𝑛𝜋 or 𝑘𝑜 =
𝑛𝜋

𝑙
 

Accepting n=1, we write 𝑘𝑜 = 𝜋 𝑙⁄  in Eq. (26) and find the initial cost of the crisis tension:  

𝜎𝑏(𝑜) =
𝜋2𝐸𝑜𝐽𝜔

𝑙2𝐽𝑝
+

𝐺𝐽𝑘

𝐽𝑝
,   (28) 

Similarly to the strongest fasteners of the sharpest ends of the bars, we can write Eq. (28) in the following 

way: 

𝜎𝑏(𝑜) =
𝜋2𝐸𝐽𝜔

(𝜇𝑙)2𝐽𝑝
+

𝐺𝐽𝑘

𝐽𝑝
,   (28′) 

Here the length coefficient of the bar may be equal to𝜇 = 0,5. If one of the cutting edges of the bar is tightly 

fastened and the other one is rolling 𝜇 = 0,7 is accepted.  

Taking into account 𝐶2 = 0, Eq. (27) takes the following form: 

𝑑2𝜃𝑜

𝑑𝑥2
= 𝐶1 𝑠𝑖𝑛 𝑘𝑜 𝑥  (29) 

Considering Eq. (29), the following complex differential in Eq. (25) is defined as: 

𝑑2

𝑑𝑥2
(
𝑑2𝜃𝑜

𝑑𝑥2
)
3

= 𝐶1
3 (−

3

4
𝑘𝑜
2 𝑠𝑖𝑛 𝑘𝑜 𝑥 +

9

4
𝑘𝑜
2 𝑠𝑖𝑛 3 𝑘𝑜𝑥)   (30) 

Subsequenty, placing Eq. (30) in Eq. (25) we get: 
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𝑑4𝜃1

𝑑𝑥4
+ 𝑘1

2 ⋅
𝑑2𝜃1

𝑑𝑥2
=

𝛽

𝐽𝜔
𝐶1
3 ⋅ (−

3

4
𝑘𝑜
2 𝑠𝑖𝑛 𝑘𝑜 𝑥 +

9

4
𝑘𝑜
2 𝑠𝑖𝑛 3 𝑘𝑜𝑥)

3

(𝜔 ∫
𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹)  (31) 

here 

 𝑘1
2 =

𝜎𝑏(1)⋅𝐽𝑝−𝐺𝐽𝑘

𝐸𝑜𝐽𝜔
   (32) 

 we accept the solution of the differential in Eq. (31) in the following way: 

𝑑2𝜃1

𝑑𝑥2
= 𝐷1 𝑠𝑖𝑛 𝑘1 𝑥 + 𝐷2 𝑐𝑜𝑠 𝑘1 𝑥 + 𝐶1

3𝑘𝑜
2(𝑎 𝑠𝑖𝑛 𝑘𝑜 𝑥 + 𝑏 𝑠𝑖𝑛 3 𝑘𝑜𝑥) ⋅

𝛽

𝐽𝜔
(𝜔 ∫

𝐹
𝜔3𝑑𝐹 − ∫

𝐹
𝜔4𝑑𝐹) (33) 

by substituting Eq. (33) in Eq. (25), we get equations a and b: 

 𝑎 = −
3

4
⋅

1

𝛼𝑘
2−1

,  𝑏 =
9

4
⋅

1

𝛼𝑘
2−1

,    (34) 

here    

 

𝛼𝑘 =
𝑘1
𝑘𝑜

  

 

Let’s assume that the cutting edges of the bar do not rotate in the flat shape. In this case, the boundary 

conditions of the equation will be as follows: 

𝑥 = 0,  𝑥 = 𝑙 𝑜𝑙𝑑𝑢𝑞𝑑𝑎 𝜃 = 0;

𝑥 = 0,  𝑥 = 𝑙 𝑜𝑙𝑑𝑢𝑞𝑑𝑎 
𝑑𝜃

𝑑𝑥
= 0

}

 

(35)

 
 We write Eq. (29) and Eq. (33) equations to their places in expression a and get : 

      
𝑑2𝜃

𝑑𝑥2
=
𝑑2𝜃𝑜
𝑑𝑥2

+ 𝑣
𝑑2𝜃1
𝑑𝑥2

= 𝐶1 𝑠𝑖𝑛 𝑘𝑜 𝑥 + 

+𝑣 [𝐷1 𝑠𝑖𝑛 𝑘1 𝑥 + 𝐶1
3𝑘𝑜

2(𝑎 𝑠𝑖𝑛 𝑘𝑜 𝑥 + 𝑏 𝑠𝑖𝑛 3 𝑘𝑜𝑥)
𝛽

𝐽𝜔
(𝜔 ∫

𝐹
𝜔3𝑑𝐹 − ∫

𝐹
𝜔4𝑑𝐹)]  (36) 

We get the last equation by integrating it: 

        
𝑑𝜃

𝑑𝑥
=
𝑑𝜃𝑜
𝑑𝑥

+ 𝑣
𝑑𝜃1
𝑑𝑥

= −
𝐶1
𝑘𝑜
𝑐𝑜𝑠 𝑘𝑜 𝑥 − 

−𝑣 [
1

𝑘1
𝐷1 𝑐𝑜𝑠 𝑘1 𝑥 + 𝐶1

3𝑘𝑜
2 (
𝑎

𝑘𝑜
𝑐𝑜𝑠 𝑘𝑜 𝑥 +

𝑏

3𝑘𝑜
𝑐𝑜𝑠 3 𝑘𝑜𝑥)

𝛽

𝐽𝜔
(𝜔∫

𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹)] ; 

  𝜃 = 𝜃𝑜 + 𝑣𝜃1 = −
𝐶1
𝑘𝑜
2
𝑠𝑖𝑛 𝑘𝑜 𝑥 − 𝑣 [

1

𝑘1
2 𝐷1 𝑠𝑖𝑛 𝑘1 𝑥 + 𝐶1

3 (𝑎 ⋅ 𝑠𝑖𝑛 𝑘𝑜 𝑥 +
𝑏

9
𝑠𝑖𝑛 3 𝑘𝑜𝑥) ⋅ 

         ⋅
𝛽

𝐽𝜔
(𝜔 ∫

𝐹
𝜔3𝑑𝐹 − ∫

𝐹
𝜔4𝑑𝐹)]  (37) 

Substituting Eq. (37) in the boundary conditions of Eq. (35), we get: 

𝑑𝜃

𝑑𝑥
|
𝑥 = 0

= 0;  −
𝐶1
𝑘𝑜
− 𝑣 [

𝐷1
𝑘1
+ 𝐶1

3𝑘𝑜 (𝑎 +
𝑏

3
) ⋅

𝛽

𝐽𝜔
(𝜔∫

𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹)] = 0; 

𝑑𝜃

𝑑𝑥
|
𝑥 = 𝑙

= 0;  
𝐶1
𝑘𝑜
𝑐𝑜𝑠 𝑘𝑜 𝑙 + 𝑣 [

𝐷1
𝑘1
𝑐𝑜𝑠 𝑘1 𝑙 + 𝐶1

3𝑘𝑜 (𝑎 𝑐𝑜𝑠 𝑘𝑜 𝑙 +
𝑏

3
𝑐𝑜𝑠 3 𝑘𝑜𝑙) ⋅ 

       ⋅
𝛽

𝐽𝜔
(𝜔∫

𝐹

𝜔3𝑑𝐹 − ∫
𝐹

𝜔4𝑑𝐹)] = 0; 

𝜃|𝑥=0 = 0; 

𝜃|𝑥=𝑙 = 0;  −
𝐶1
𝑘𝑜
2
𝑠𝑖𝑛 𝑘𝑜 𝑙 − 𝑣 [

𝐷1

𝑘1
2 𝑠𝑖𝑛 𝑘1 𝑙 + 𝐶1

3 (𝑎 𝑠𝑖𝑛 𝑘𝑜 𝑙 +
𝑏

9
𝑠𝑖𝑛 3 𝑘𝑜𝑙) ⋅ 
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       ⋅
𝛽

𝐽𝜔
(𝜔 ∫

𝐹
𝜔3𝑑𝐹 − ∫

𝐹
𝜔4𝑑𝐹)] = 0  (38) 

From the first of the conditions of Eq. (38) we get: 

 𝐶1
3 = −

𝐶1
𝑘𝑜
+𝑣

𝐷1
𝑘1

𝑣𝑘𝑜
𝛽

𝐽𝜔
(𝑎+

𝑏

3
)⋅(𝜔 ∫𝐹 𝜔3𝑑𝐹−∫𝐹 𝜔4𝑑𝐹)

  (39) 

Having written the last expression in the place of other conditions of Eq. (38), we obtain the following algebric 

equations for C1 and D1 constants: 

 

𝐶1
𝑘𝑜
(𝑐𝑜𝑠 𝑘𝑜 𝑙 −

𝑎 ⋅ 𝑐𝑜𝑠 𝑘𝑜 𝑙 +
𝑏
3
𝑐𝑜𝑠 3 𝑘𝑜𝑙

𝑎 +
𝑏
3

) + 𝑣
𝐷1
𝑘1
(𝑐𝑜𝑠 𝑘1 𝑙 −

𝑎 ⋅ 𝑐𝑜𝑠 𝑘𝑜 𝑙 +
𝑏
3
𝑐𝑜𝑠 3 𝑘𝑜𝑙

𝑎 +
𝑏
3

) = 0 

𝐶1

𝑘𝑜
2 (𝑠𝑖𝑛 𝑘𝑜 𝑙 −

𝑎⋅𝑠𝑖𝑛 𝑘𝑜𝑙+
𝑏

9
𝑠𝑖𝑛 3𝑘𝑜𝑙

𝑎+
𝑏

3

) + 𝑣
𝐷1

𝑘1
2 (𝑠𝑖𝑛 𝑘1 𝑙 −

𝑎⋅𝑠𝑖𝑛 𝑘𝑜𝑙+
𝑏

9
𝑐𝑜𝑠 3𝑘𝑜𝑙

𝑎+
𝑏

3

) = 0  (40) 

Making the Eq. (40) system’s determinant equal to zero for getting the smallest value of the k1, we obtain the 

following complex algebraic equations system: 

 

1

𝑘1
2𝑘𝑜

(𝑐𝑜𝑠 𝑘𝑜 𝑙 −
𝑎 𝑐𝑜𝑠 𝑘𝑜 𝑙 +

𝑏
3
𝑐𝑜𝑠 3 𝑘𝑜𝑙

𝑎 +
𝑏
3

)(𝑠𝑖𝑛 𝑘1 𝑙 −
𝑎 𝑠𝑖𝑛 𝑘𝑜 𝑙 +

𝑏
9
𝑠𝑖𝑛 3 𝑘𝑜𝑙

𝑎 +
𝑏
3

) + 

+
1

𝑘𝑜
2𝑘1

(𝑠𝑖𝑛 𝑘𝑜 𝑙 −
𝑎 𝑠𝑖𝑛 𝑘𝑜 𝑙 +

𝑏
9
𝑠𝑖𝑛 3 𝑘𝑜𝑙

𝑎 +
𝑏
3

)(𝑐𝑜𝑠 𝑘1 𝑙 −
𝑎 𝑐𝑜𝑠 𝑘𝑜 𝑙 +

𝑏
3
𝑐𝑜𝑠 3 𝑘𝑜𝑙

𝑎 +
𝑏
3

) = 0 

 

Defining the minimum equation for the coefficient 

k1 through numerical methods from the last equation 

and writing it in Eq. (32) we determine the crisis tension 

- 𝜎𝑏(1) in the first approach: 

 𝜎𝑏(1) =
𝑘1
2𝐸𝑜𝐽𝜔+𝐺𝐽𝑘

𝐽𝑝
   (41) 

Analogically, as described above, by keeping the 

first two boundaries of the expression (𝑎) and having 

written in the differential Eq. (23′) we get appropriate 

𝑘2 = 2𝜋 𝑙⁄  coefficient, and the crisis tension 𝜎𝑏(2) 

according to the 𝑛 = 2 condition of the small 

parameter, i.e. due to𝑣2 − 𝑎. Thus, we determine the 

crisis tension in the second approximation of thin-

walled bar: 

𝜎𝑏
(𝐼𝐼) = 𝜎𝑏(0) + 𝑣𝜎𝑏(1) + 𝑣

2𝜎𝑏(2)   (42) 

Numerous calculations have shown that, the 

difference between the sum of the first two limits of Eq. 

(42) and (𝜎𝑏
(𝐼) − the first approximation) the second 

approximation is 1,64%. Therefore we can be satisfied 

with that the equation can be solved by the solution in 

the second approach. 

CONCLUSION 

The problem of clamping resistance in the centre 

of the thin-walled open profile bars has been 

extensively studied. For the first time, the nonlinear 

elastic property of the material of the bars is taken into 

account, in addition, the nonlinear differential 

equilibrium equation for the determination of crisis 

tension has been compiled. The smallest parameters 

method, which is most optimal for determining the 

crisis tension in the differential equation, has been used. 

As a result, the complex nonlinear differential equation 

is divided into several simple linear differential 

equations and their solution provides the satisfactory 

results specially in the second approximation. 
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