Since the 1950s the system of pipeline transportation in the USSR has been continuously increasing its production capacity and currently the length is more than 250 thousand kilometers [9]. Obviously, with this size the problem of ensuring the reliability and safety of all gas and oil pipelines has been becoming more and more relevant. Transportation of aggressive oil and gas media of such a large volume at high pressures requires special attention to the keeping of the integrity of the pipelines in order to prevent failures and accidents.
Thanks to the regular internal pipeline inspection [4,5] with the help of special crack detectors it is possible to timely determine and fix most of potential pipe failures: wall thinning, cracks, corrosion pits and other prospect faults near the areas where deformation mode could exceed it’s designed value. Special companies relates to main Russian gas and oil pipelines operators have developed high-class tools for pipeline internal diagnostic and have aggregated a huge amount of data related to the deformation modes for all lengths parts of pipelines with different wall parameters [3,6,7].
The next step in the art of pipeline reliability assurance is not only to detect potential failures but also to predict them. And these data collected in the period of more than 25 years could be efficiently used for this purpose now.
The current compute capacity if well enough to gather all diagnostic data for both oil and gas pipelines a unite database. Therefore, the first step is to merge oil and gas pipelines diagnostic databases under equal and definite rules (legend keys, measuring units/systems etc.)
Secondly, it is very important to develop and establish a united coordinate system for all the related subsidiaries of the main Russian oil and gas pipelines operators. It is required to connect all the existed data to the real pipeline distance points, and, as a result, we will receive the real history of pipes’ deformation mode for each pipe point where cracks have been detected [1].
The next step of analysis is to designate all the points where real failures happened accidentally or could unavoidably take place and to consider if they need a rapid intervention and fixing.
Knowing the combination of all the pipelines parameters at the so-called “failure points” we can historically review the process of their “failures” and track all the changes in time: the speed or, even, the acceleration of wall thinning, unstable deformation mode, that could exceed the designed value, pressure jumps and all the other internal / external events and conditions.
For all the failure points it’s necessary to classify their “biographies” by dividing them into different groups and subgroups on the basis of the real root cause analysis. Each “risky group” should be clearly described by the combination of external and internal parameters (or range of parameters) and their vector of changing within the time.
After the classification is completed all other points of pipelines should be tested on their correspondence to the described risky group.
As the output of this analysis we’ll get a range of pipelines point, where according to the statistical analysis, there is a risk of failure with some amount of probability. Then the designated points could be inspected manually, their deformation mode could and should be determined and the decision on the next steps on reliability assurance could be taken [2,8].
The described algorithm could help to predict all the pipeline points where the risk of failure is high (compared to the real statistic) and prevent pipeline fault before it happened.
The value of engineering work in the pipeline transportation becomes relevant with the reduced oil price. Especially taking into consideration the fact that for each 250 thousand kilometers of Russian gas and oil pipelines the average operation period has exceeded 30 years.
Список литературы:
- Bikmukhametov D.F., Korobkov G.E.,Yanchushka A.P. Features of Aboveground Pipeline Compensation Part Stress-Deformed Study at Permafrost.-Modern Applied Science; Vol. 9, No. 8; 2015. Published by Canadian Center of Science and Education.
- Колчин А.В., Янчушка А.П. Математический аппарат нейронных сетей в приложениях. В сборнике: Мировое сообщество: проблемы и пути решения Уфимский государственный нефтяной технический университет. Уфа, 2011. С. 31-32.
- Коробков Г.Е., Зарипов Р.М., Шаммазов И.А. Численное моделирование напряженно-деформированного состояния и устойчивости трубопроводов и резервуаров в осложненных условиях эксплуатации. Санкт-Петербург. 2009.- 410 с.
- Шаммазов А.М., Мастобаев Б.Н., Сощенко А.Е., Коробков Г.Е., Писаревский В.М. Основы технической диагностики трубопроводных систем нефти и нефтепродуктов. / Санкт-Петербург. 2010.- 428 с.
- Шаммазов А.М., Мастобаев Б.Н., Сощенко А.Е., Коробков Г.Е., Писаревский В.М. Основы технической диагностики трубопроводных систем нефти и газа. / Санкт-Петербург. 2009.- 462 с.
- Шаммазов А.М., Зарипов Р.М., Чичелов В.А., Коробков Г.Е. Расчет и обеспечение прочности трубопроводов в сложных инженерно-геологических условиях. Том 1 Численное моделирование напряженно-деформированного состояния и устойчивости трубопроводов. Москва, 2005.- 706 с.
- Шаммазов А.М., Зарипов Р.М., Чичелов В.А., Коробков Г.Е. Расчет и обеспечение прочности трубопроводов в сложных инженерно-геологических условиях. Том 2 Оценка и обеспечение прочности трубопроводов в сложных инженерно-геологических условиях. Москва. 2006.- 564 с.
- Янгиров Р.А., Янчушка А.П. Особенности применения математического аппарата программных комплексов ANSYS и старт для расчета прочности узлов врезки от давления. В сборнике: Трубопроводный транспорт-2015 Материалы Х Международной учебно-научно-практической конференции. 2015. С. 233-234.
- Янчушка А.П. Развитие теории оболочек. В сборнике: Актуальные проблемы технических, естественных и гуманитарных наук. Материалы Международной научно-технической конференции. 2010. С. 239-241.[schema type=»book» name=»PREDICTION OF PIPELINE FAILURES WITH HELP OF HISTORICAL ANALYSIS OF DIAGNOSTIC DATA» description=»The article touches upon the problem of pipelines failure prevention. One of the ways to do so is to use special control devices, which not only detect pipe walls’ faults but fix their parameters and save this information for a long time. Such achieve can help not only to detect the present failures but p also to predict the possible ones and to choose the best repair method for each case. Which can lead to the great conomy for the pipeline transportation industry.» author=»Янчушка Анна Павловна, Назаров Олег Рамилевич» publisher=»БАСАРАНОВИЧ ЕКАТЕРИНА» pubdate=»2016-12-18″ edition=»euroasia-science_28.04.2016_4(25)» ebook=»yes» ]