Номер части:
Журнал

MODELLING OF A THREE-DIMENSIONAL PROBLEM OF DISTRIBUTION OF HARMFUL IMPURITY IN THE RIVER A RECURRENTLY-OPERATIONAL METHOD (8-12)



Науки и перечень статей вошедших в журнал:


DOI: 10.31618/ESU.2413-9335.2020.1.75.826
Дата публикации статьи в журнале: 2020/07/21
Название журнала: Евразийский Союз Ученых, Выпуск: 75, Том: 1, Страницы в выпуске: 8-12
Автор: Pirniyazova P. M.
, ,
Автор:
, ,
Автор:
, ,
Анотация: In this article the decision of a three-dimensional problem of diffusion is considered by a recurrentlyoperational method which describes process of distribution of harmful impurity along a watercourse. The received numerical results on the COMPUTER where it is possible to define for what time are resulted there is a distribution and river clarification. The received results are illustrated in drawings.
Данные для цитирования: Pirniyazova P. M. . MODELLING OF A THREE-DIMENSIONAL PROBLEM OF DISTRIBUTION OF HARMFUL IMPURITY IN THE RIVER A RECURRENTLY-OPERATIONAL METHOD (8-12) // Евразийский Союз Ученых. Технические науки. 2020/07/21; 75(1):8-12. 10.31618/ESU.2413-9335.2020.1.75.826



Список литературы: 1.Berlyand M. E. Modern problems of atmospheric diffusion and air pollution. -Leningrad: Gidrometeoizdat, 1975.- 447 p. 2.Berlyand M.E The forecast and regulation of pollution of atmosphere. –Leningrad: Gidrometeoizdat, 1985.- 271 p. 3.Bondarenko B. A., Pirniyazova P. M. Normalized systems of functions and their applications to the solution of the problems for the equations diffusions /Questions Calculus and Applied mathematics. -Tashkent, - Institute of Mathematic and Information Technology of academy Science of RUz. 2008.- №. 119.- p. 5 12. 4.Ivaknenko A. G. Inductive method of selforganization of models of complex systems.- Kyiv: Naukova dumka, 1982 – 296 p. 5.Kachaishvili K. I., Gordesiani D. G., Melikzhanyan G. I. Modern modeling and computer technologies for research and quality control to river water. – Tbilisi. GTU, 2007. – 251 c. 6.Spivakov U. L. Special classes of solutions of linear differential equations and their application in an anisotropic and inhomogeneous theory of elasticity. – Tashkent: FAN, 1987. - 296 p. 7.Frolov, V. N. Special classes of functions in the anisotropic theory of elasticity. – Tashkent.: FAN. 1981. – 224 c. 8.Pirniyazova P. M. About solving singlemeasure problem of diffusion // The Uzbek Journal « The Problem of Informatics and Energetics”. Tashkent, 2005. - № 4. - p. 97-101. 9.Pirniyazova P. M. The decision of the general problem of one-dimensional diffusion by a recurrentlyoperational method//The Uzbek Journal «The Problem of Informatics and energetics”. - Tashkent, 2005. № 5.- p. 89-94. 10.Pirniyazova P. M. Solution of the spatial diffusion roblem by the recurrently-operator method// The Uzbek Journal « The Problem of Informatics and Energetics ». -Tashkent, 2009. - № 2 - p. 82-87. 11.Pirniyazova P. M. Analytical solution of Diffusion Problems in the simulation of the impurity diffusion and obtaining an exact solution//”Austrian Journal of Technical and Natural Sciences”.- Vienna, 2018.- № 1–2.-p.32-36


Записи созданы 442

Похожие записи

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх