Номер части:
|
|||||||||||||
Журнал
|
ISSN: 2411-6467 (Print)
ISSN: 2413-9335 (Online)
Статьи, опубликованные в журнале, представляется читателям на условиях свободной лицензии CC BY-ND
ISSN: 2413-9335 (Online)
Статьи, опубликованные в журнале, представляется читателям на условиях свободной лицензии CC BY-ND
MODELLING OF A THREE-DIMENSIONAL PROBLEM OF DISTRIBUTION OF HARMFUL IMPURITY IN THE RIVER A RECURRENTLY-OPERATIONAL METHOD (8-12)
Науки и перечень статей вошедших в журнал:
DOI: 10.31618/ESU.2413-9335.2020.1.75.826
Дата публикации статьи в журнале: 2020/07/21
Название журнала: Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале, Выпуск:
75, Том: 1,
Страницы в выпуске: 8-12
Автор:
Pirniyazova P. M.
, ,
, ,
Анотация: In this article the decision of a three-dimensional problem of diffusion is considered by a recurrentlyoperational method which describes process of distribution of harmful impurity along a watercourse. The received numerical results on the COMPUTER where it is possible to define for what time are resulted there is a distribution and river clarification. The received results are illustrated in drawings.
Ключевые слова:
Modelling,
process of distribution of harmful impurity,recurrent parity,the recurrent equation,diffusion factor,factor no conservation,the exact decision,Problem Кashi,concentration of emission,
Данные для цитирования: Pirniyazova P. M. . MODELLING OF A THREE-DIMENSIONAL PROBLEM OF DISTRIBUTION OF HARMFUL IMPURITY IN THE RIVER A RECURRENTLY-OPERATIONAL METHOD (8-12) // Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале.
Технические науки.
2020/07/21;
75(1):8-12.
10.31618/ESU.2413-9335.2020.1.75.826
Список литературы: 1.Berlyand M. E. Modern problems of atmospheric diffusion and air pollution. -Leningrad: Gidrometeoizdat, 1975.- 447 p.
2.Berlyand M.E The forecast and regulation of pollution of atmosphere. –Leningrad: Gidrometeoizdat, 1985.- 271 p.
3.Bondarenko B. A., Pirniyazova P. M. Normalized systems of functions and their applications to the solution of the problems for the equations diffusions /Questions Calculus and Applied mathematics. -Tashkent, - Institute of Mathematic and Information Technology of academy Science of RUz.
2008.- №. 119.- p. 5 12.
4.Ivaknenko A. G. Inductive method of selforganization of models of complex systems.- Kyiv: Naukova dumka, 1982 – 296 p.
5.Kachaishvili K. I., Gordesiani D. G.,
Melikzhanyan G. I. Modern modeling and computer technologies for research and quality control to river water. – Tbilisi. GTU, 2007. – 251 c.
6.Spivakov U. L. Special classes of solutions of linear differential equations and their application in an anisotropic and inhomogeneous theory of elasticity. – Tashkent: FAN, 1987. - 296 p.
7.Frolov, V. N. Special classes of functions in the anisotropic theory of elasticity. – Tashkent.: FAN. 1981. – 224 c.
8.Pirniyazova P. M. About solving singlemeasure problem of diffusion // The Uzbek Journal «
The Problem of Informatics and Energetics”. Tashkent, 2005. - № 4. - p. 97-101.
9.Pirniyazova P. M. The decision of the general problem of one-dimensional diffusion by a recurrentlyoperational method//The Uzbek Journal «The Problem of Informatics and energetics”. - Tashkent, 2005. № 5.- p. 89-94.
10.Pirniyazova P. M. Solution of the spatial diffusion roblem by the recurrently-operator method// The Uzbek Journal « The Problem of Informatics and Energetics ». -Tashkent, 2009. - № 2 - p. 82-87.
11.Pirniyazova P. M. Analytical solution of Diffusion Problems in the simulation of the impurity diffusion and obtaining an exact solution//”Austrian
Journal of Technical and Natural Sciences”.- Vienna,
2018.- № 1–2.-p.32-36