Номер части:
Журнал
ISSN: 2411-6467 (Print)
ISSN: 2413-9335 (Online)
Статьи, опубликованные в журнале, представляется читателям на условиях свободной лицензии CC BY-ND

Preliminary studies of physicochemical and fatty acids composition in colostrum from «Bulgarian Mura» buffaloes breed



Науки и перечень статей вошедших в журнал:
DOI:
Дата публикации статьи в журнале:
Название журнала: Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале, Выпуск: , Том: , Страницы в выпуске: -
Данные для цитирования: . Preliminary studies of physicochemical and fatty acids composition in colostrum from «Bulgarian Mura» buffaloes breed // Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале. Сельскохозяйственные науки. ; ():-.

In recent years, colostrum represents scientific interest because of the content of biological active components. It is functional products with significant health benefits, improve health status and apply to immune deficiency. It finds application in influenza, candidiasis, diarrhea, gastrointestinal diseases of bacterial, viral and parasitic character, as well as in autoimmune diseases such as arthritis, asthma, allergies, lupus eritematosus, multiple sclerosis, fibromyalgia [1, 4, 8]. Colostrum is rich of nutritional components- protein, minerals, vitamins and others, and biologically active substances- immunoglobulin’s, enzymes, hormones, growth factors, etc. [9].

         The application of different diets (high and low energy intake) during the dry period of cows led to minor changes in physicochemical composition of colostrum, but the concentration of IgA in the colostrum has significantly higher in cows with low-energy diet. The content of total immunoglobulin’s, G and M classes of immunoglobulin in colostrum are not influenced by the feeding of ruminants during the dry period [3].          The fat in milk from «Bulgarian buffalo» range from 7.5 to 7.7% and milk of animal from breed «Mura» -7.96 to 8.00%, while cross of the two breed «Bulgarian Mura» from 7.9 to 7.92%. Milk fat is low during the first 15 days and increased to 225-300 lactating day. Colostrum period is seven days, the amount of colostrum represents 1/10 of the live weight of young buffalo [15].

                Colostrum of buffalo can be an important source of fatty acids in the human diet is therefore important to know the fatty acids composition especially the content of polyunsaturated fatty acids, which have proven health benefits in the prevention of many diseases, such as diabetes, cardiovascular disease, hyperlipidaemia, nerve disorders and various cancers [2, 7]. Buffalo’s milk is a good source of oleic acid [5]. Fat, protein and total solids in colostrum reduce with increasing colostrum period as compared with lactose, ash and pH. Fatty acids have a higher concentration during the summer period [6]. Varga-Visi et al. [8] found in six breeds that no significant changes in the fat content of colostrum from different breeds of cows, but found a higher content of saturated fatty acids from Jersey‘s to Holstein Friesian, Brown Swiss and Norwegian red, higher content of monounsaturated fatty acids in Brown Swiss compared with Jersey and Ayrshire. The amount of omega-6 fatty acids is high in Holstein-Friesian breed compared to other omega-3 fatty acids and CLA in colostrum does not depend on breed differences, the ratio of omega-6 / omega-3 fatty acids is the highest in colostrum from Holstein-Friesian breed cows [8]. Paszczyk et al.,[1], were determining the content of CLA in colostrum 0.34%, which is lower than the analysed milk by the same cows- 0.42%.

         The purpose of the study was to determine the physicochemical and fatty acid composition of raw and freeze-dried colostrum obtained from «Bulgarian Mura» buffalo breed. The studies were conducted with bulk tank samples of colostrum. Physical and chemical composition of colostrum is performed with ekomilk, dry colostrum were analysed by standard methods. The extraction of the total lipids was performed by the method of Bligh&Dyer (1959) [10] by chloroform and methanol in ratio of 1:2. The methyl esters of the fatty acids were analyzed using gas chromatograph Shimadzu-2010 (Kyoto, Japan). The analysis was carried out on a capillary column CP7420 (100 m x 0.25 mm i.d., 0.2 m, Varian Inc., Palo Alto, CA), with carrier gas- hydrogen and make-up gas- nitrogen. Is programmed furnace regime of five steps.

         The study was carried out with buffalo from «Bulgarian Mura» breed on the second lactation to establish the physicochemical and fatty acid composition of raw and freeze-dried colostrum. Physical and chemical composition is presented in Table 1. The content of total solids is 17, 61%, fat- 4.42%, protein- 6.62%, which in turn determines the highest density in the colostrum-1,04 g / cm³ in compared with milk from buffaloes determined by BSS 15: 2010, Annex B[11].

Table 1.

 Physicochemical composition of raw and freeze-drying colastrum

Humidity,
%
Total solids,
%
Fat,
%
Protein,

%

SNF,
%
Density, 20ᵒС, g/cm³ Humidi

fication,
%

FP,оС
raw
colastrum
X 82,40 17,61 4,42 6,64 12,20 1,04 0,00 0,67
Sd 0,06 0,06 0,18 0,13 0,14 0,42 0,00 0,01
lyoph. colastrum X 0,08 99,93 25,11 37,69 69,30
Sd 0,01 0,01 1,04 0,76 0,80

         The lyophilized colostrum has a low content of residual moisture- 0.08%, which, in turn, purport of a well conducted process of freeze drying.

         Fatty acid composition of colostrum before and after lyophilisation is presented in Table 2. The saturated fatty acids in the analysed raw colostrum is 60,33 g / 100g fat, while in the lyophilised increased by 9%. This is due to the reduction of the total content of monounsaturated fatty acids in colostrum after freeze drying from 34.73 to 28,49 g / 100g fat.

Table 2.

Fatty acids (g / 100g fat) in raw and freeze drying colastrum

FATTY ACIDS Raw colastrum FD

colastrum

FATY ACIDS Raw colastrum FD colastrum
SFA SX SD SX SD PUFA SX SD SX SD
C-8:0 0,09 0,02 0,02 0,01 C-8:2c9,12/19:0 2,23 0,79 2,21 0,79
C-10:0 0,57 0,21 0,75 0,25 gC-18:3n6 0,09 0,01 0,10 0,01
C-12:0 1,16 0,69 1,63 0,61 aC-18:3n3 0,31 0,01 0,56 0,01
C-14:0 8,08 0,95 9,66 0,85 CLA9c,11t 0,05 0,04 0,19 0,04
C-15:0 0,55 0,01 0,80 0,01 C-20:2n6 0,03 0,00 0,03 0,00
C-16:0 40,20 1,05 38,56 1,25 C-20:3n6 0,25 0,01 0,10 0,01
C-17:0 0,84 0,04 0,97 0,04 C-20:4n6 0,28 0,01 0,18 0,01
C-18.0 8,67 0,31 13,21 0,21 C-22:2n6 0,02 0,02 0,01 0,00
C-20:0 0,11 0,00 0,23 0,00 C-22:5n3 0,06 0,02 0,05 0,02
C-22:0 0,04 0,00 0,06 0,00 BFA        
MUFA         C-13iso 0,01 0,00 0,01 0,00
C-10:1 0,02 0,01 0,02 0,01 C-13aiso 0,01 0,00 0,01 0,00
C-15:1n5 0,13 0,00 0,26 0,00 C-14iso 0,03 0,00 0,12 0,00
C-16:19tr 0,02 0,00 0,02 0,00 C-15iso 0,74 0,15 0,71 0,15
C-16:1n7 2,02 0,02 1,32 0,02 C-15aiso 0,12 0,00 0,37 0,00
C-16:2n4 0,01 0,00 0,01 0,00 C:16iso 0,02 0,00 0,02 0,00
C-17:1n7 0,41 0,02 0,35 0,02 C-17iso 0,33 0,01 0,39 0,01
C-18:1t5/6/7 0,15 0,00 0,35 0,00 C-17aiso 0,36 0,01 0,49 0,01
C-18:1t9 0,18 0,02 0,37 0,02 C-18iso 0,10 0,00 0,11 0,00
C-18:1t10 0,10 0,00 0,19 0,00 Group FA        
C-16:4n1 0,59 0,04 0,00 0,00 ΣCLA 0,05 0,04 0,19 0,04
C-18:1t11 1,81 0,08 1,79 0,08 Σ C-18:1TFA 1,26 0,00 3,43 0,00
C-18:1c9/C-18:1t12/13/ 29,62 1,56 22,55 1,56 Σ C-18:1CFA 30,11 1,75 22,87 1,75
C-18:1t15/C-18:1c11 0,74 0,05 0,56 0,05 SFA 60,33 0,98 65,94 0,98
C-18:1c12 0,26 0,04 0,07 0,02 MUFA 34,73 1,81 28,49 1,81
C-18:1c13 0,10 0,04 0,07 0,04 PUFA 3,33 0,83 3,47 0,83
C-18:1t16 0,08 0,04 0,16 0,06 Σ n-3 0,38 0,00 0,63 0,00
C-18:1c14 0,01 0,00 0,05 0,01 Σ n-6 3,16 0,55 2,71 0,55
C-18:1c15 0,13 0,01 0,13 0,01 Σ n-6/Σn-3 8,25 1,44 4,28 1,44
C-20:1n9 0,05 0,01 0,04 0,01 BFA 1,73 0,14 2,23 0,14
C-22:1n9 0,08 0,01 0,16 0,01 CLA 0,05 0,04 0,19 0,04

The main representatives of saturated fatty acids, which are relevant to human nutrition and health status are lauric (C12: 0), myristic (C14: 0) acid, palmitic (C16: 0) and stearic acid (C18: 0). The raw and freeze-dried colostrum with the highest concentration of palmitic acid, respectively 40,2 and 38,56 g / 100g fat, followed by stearic- 8,67 and 13,21 g / 100g fat, myristic- 8.08 and 9,66 g / 100g fat and the lowest amount is lauric- 1,16 and 1,63 g / 100g fat. Oleic acid in the analysed samples has a higher concentration in the crude colostrum- 29,62 g / 100g fat. Trans vaccenic, alpha and gamma linolenic acid are relatively equal amounts in raw and lyophilized colostrum. CLA is at a concentration from 0.05 at the raw and 0,19 g / 100g fat in the freeze-dried colostrum. The total amount of trans fatty acids in the raw colostrum is 1,26 g / 100g of fat, and in the freeze-dried was 3,43 g / 100g fat. The cis- isomers are in a higher concentration in the raw colostrum, which could be due to oxidation and destructive processes. Omega-3 fatty acids in larger quantities in the lyophilized colostrum, omega-6 in the crude colostrum and therefore there is also a high ratio between omega-6 and omega-3 in the raw colostrum- 8.25. Lyophilized colostrum were characterized by a ratio of omega-6 and omega-3 fatty acid 4.28, which allows us to define it as a low-risk factor for human health, since factor is below 5. The results of fatty acid profile in colostrum from «Bulgarian Mura» buffaloes breed have a lower content of saturated, polyunsaturated, omega-3 fatty acids and CLA, and higher in monounsaturated fatty acids compared to those obtained for large and small ruminants and humans in literature [7, 8, 9, 12, 13, 14]. The lyophilized product keeps starting the physicochemical parameters and fatty acid composition due to the low moisture content and well organized process.

References:

  1. Paszczyk B., Żegarska Z., Borejszo Z. The Contents of Trans Fatty Acids and CLA in Cow Colostrum and Milk Fat in the Early Lactation Period // Czech J. Food Sci. — Vol. 23. № 4.- P. 159–165.
  2. Yurchenko S., Sats A., Poikalainen V., Karus A. Method for determination of fatty acids in bovine colostrum using GC-FID// Food Chemistry. 2016.- № 212.- P 117–122.
  3. Nowak W., Mikuła R., Zachwieja A., Paczyńska K., Pecka E., Drzazga K., Ślósarz P. The impact of cow nutrition in the dry period on colostrum quality and immune status of calves // Polish Journal of Veterinary Sciences. 2012.- 15.- № 1.- P. 77-82.
  4. Conte, F., Scarantino, S. A study on the quality of bovine colostrum: physical, chemical and safety assessment // International Food Research Journal. 2013.- 20.- № 2.- P. 925-931.
  5. Haug A., Høstmark A.T., Harstad O.M., Bovine milk in human nutrition – a review // Lipids in Health and Disease. 2007.- № 6.- P. 25.
  6. Coroian A., Erler S., Matea C. T., Mireșan V., Răducu C., Bele C., Coroian C. O. Seasonal changes of buffalo colostrum: physicochemical parameters, fatty acids and cholesterol variation // Chemistry Central Journal. 2013.- № — P. 40.
  7. Pan D., Liu H. Preventive effect of ordinary and hyperimmune bovine colostrums on mice diabetes induced by alloxan // African Journal of Biotechnology. 2008.- 7.- № 24.- P. 4369-4375.
  8. Varga-Visi , Suli A., Beri B., Csapo-Kiss Zs., Loki K., Salamon R. V., Csap J. Colostrum of current and rare cattle breeds: fatty acid pattern // Acta Univ. Sapientiae, Alimentaria. 2011.- № 4.- P. 5-17
  9. Georgiev I. Differences in chemical composition between cow colostrum and milk // Bulgarian Journal of Veterinary Medicine. 2008.- Vol. 11.- № 1.- P. 3−12
  10. Bligh , Dyer W. A rapid method for total lipid extraction and purification // Canadian journal of biochemistry and physiology. 1959.- Vol. 37.-P. 911-917
  11. BSS 15: 2010. Bulgarian white brined cheese. P21
  12. Marounek M., Pavlata L., Mišurova L., Volek Z., Dvořak R. Changes in the composition of goat colostrum and milk fatty acids during the first month of lactation // Czech J. Anim. Sci.- Vol. 57.- № 1.- P. 28–33
  13. Santschi D. E., Wettstein H.-R., Leiber F., Witschi A.-K., Kreuzer M. Colostrum and milk fatty acids of dairy cows as influenced by extruded linseed supplementation during the transition period // J. Anim. Sci. 2009. Vol. 89.- P. 383-392
  14. Moltó-Puigmartí C., Castellote A. I., Carbonell-Estrany X., López-Sabater M. C. Differences in fat content and fatty acid proportions among colostrum, transitional, and mature milk from women delivering very preterm, preterm, and term infants // Clinical Nutrition. 2011.- Vol. 30.- P. 116-123
  15. Krusteva М. Feeding buffaloes // Agriculture. 2003.- № 6-7.- P. 33-34.[schema type=»book» name=»Preliminary studies of physicochemical and fatty acids composition in colostrum from «Bulgarian Mura» buffaloes breed» description=»The study was conducted on physicochemical and fatty acid composition of raw and freeze-dried colostrum from «Bulgarian Mura» buffalo breed. The content in raw colostrum of total solids is 17, 61%, fat- 4.42%, protein- 6.62%, which was maintained after lyophilization and therefore preconcentrate is respectively 25.11% fat, 37.69% protein and 69.3% non-fat solids. Biologically active substances in the raw colostrum were CLA-0,05 g / 100g fat, oleic acid- 29,62 g / 100g fat, trans vaccenic acid — 1,81 g / 100g fat, alpha linolenic acid — 0,31 g / 100g fat and gamma linolenic acid -0,09 g / 100g fat, while in the lyophilized as follows CLA-0,19 g / 100g fat, oleic acid- 22,55 g / 100g fat, trans vaccenic acid- 1,79 g / 100g fat, alpha linolenic acid — 0.56 and gamma linolenic acid -0,10 g / 100g fat. Variation in fatty acid composition between raw and freeze-dried colostrum are insignificant.» author=»Ivanova Silviya Atanasova, Ananoshtev Nikola Haralambev» publisher=»Басаранович Екатерина» pubdate=»2016-12-11″ edition=»euroasia-science.ru_#29_25.08.2016″ ebook=»yes» ]
Список литературы:


Записи созданы 9819

Похожие записи

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх
404: Not Found404: Not Found