Номер части:
Журнал

CONTINUOUS-TIME FRACTIONAL ORDER LINEAR SYSTEMS IDENTIFICATION USING CHEBYSHEV WAVELET (23-38)



Науки и перечень статей вошедших в журнал:


DOI: 10.31618/ESU.2413-9335.2020.6.77.1002
Дата публикации статьи в журнале: 2020/09/16
Название журнала: Евразийский Союз Ученых, Выпуск: 77, Том: 6, Страницы в выпуске: 23-38
Автор: Shuen Wang
, College of Mechanical and Electrical Engineering, Hulunbuir University,
Автор: Ying Wang
, Institute of Electrical Engineering, Yanshan University,
Автор: Yinggan Tang
, Institute of Electrical Engineering, Yanshan University,
Анотация: In this paper, the identification of continuous-time fractional order linear systems (FOLS) is investigated. In order to identify the differentiation or- ders as well as parameters and reduce the computation complexity, a novel identification method based on Chebyshev wavelet is proposed. Firstly, the Chebyshev wavelet operational matrices for fractional integration operator is derived. Then, the FOLS is converted to an algebraic equation by using the the Chebyshev wavelet operational matrices. Finally, the parameters and differentiation orders are estimated by minimizing the error between the output of real system and that of identified systems. Experimental results show the effectiveness of the proposed method.
Ключевые слова: Identification  fractional order system  Chebyshev wavelet  Operational matrices  Optimization             
Данные для цитирования: Shuen Wang Ying Wang Yinggan Tang. CONTINUOUS-TIME FRACTIONAL ORDER LINEAR SYSTEMS IDENTIFICATION USING CHEBYSHEV WAVELET (23-38) // Евразийский Союз Ученых. Физико-математические науки. 2020/09/16; 77(6):23-38. 10.31618/ESU.2413-9335.2020.6.77.1002



Список литературы: This work is partially supported by the National 1. J.C.Wang, Realizations of generalized Natural Science Foundation of China Warburg impedance with RC lad- der networks and (Nos.61273260,61771418). transmission lines, Journal of Electrochemical Soc. 134 (8) (1987) 1915–1920. 2. A.Benchellal, T. Poinot, J.-C. Trigeassou, Modelling and identification of diffusive systems using fractional models, in: Advances in Fractional Calculus, Springer, 2007, pp. 213–225. 3. A.Benchellal, T.Poinot, C.Trigeassou, Approximation and identification of diffusive interfaces by fractional systems, Signal Processing 86 (10) (2006) 2712–2727. 4. R. Bagley, R.A.Calico, Fractional order state equations for the control of viscoelastically damped structures, Journal of Guidance, Control, and Dynamics 14 (1991) 304–311. 5. H. Sun, A.A.Abdelwahed, B. Onaral, Linear approximation for transfer function with a pole of fractional order, IEEE Trans on Automatica Control 29 (1984) 441–444. 6. I.Podlubny, L. Dorcak, I. Kostial, On fractional derivatives, fractional- order dynamic systems and PIλDµ controllers, in: Proceedings of the 36th IEEE Conference on Decision and Control, Vol. 5, 1997, pp. 4985– 4990. 7. J. Sabatier, M. Aoun, A. Oustaloup, G. Gr´egoire, F. Ragot, P. Roy, Fractional system identification for lead acid battery state of charge estimation, Signal Processing 86 (10) (2006) 2645– 2657. 8. D. Wang, X. Wang, P. Han, Identification of thermal process using fractional-order transfer function based on intelligent optimization, in: 2010 IEEE/ASME International Conference on Mechatronics and Em- bedded Systems and Applications (MESA), IEEE, 2010, pp. 498–503. 9. A.Oustaloup, J. Sabatier, P. Lanusse, R. Malti, P. Melchior, X. Moreau, 10. M. Moze, et al., An overview of the CRONE approach in system analysis, modeling and identification, observation and control, in: Proc. of the 17th World Congress IFAC, no. 6-11, 2008. 11. L. L. Lay, Identification fr´equentielle et temporelle par mod´ele non en- tier, Ph.D. thesis, Universit´e Bordeaux I, Talence (1998). 12. J. Lin, Mod´elisation et identification de syst`emes d’ordre non entier, Ph.D. thesis, Universit´e de Poitiers, France (2001). 13. O. Cois, Syst`emes lin´eaires non entiers et identi?cation par mod`ele non entier: application en thermique, Ph.D. thesis, Universit´e Bordeaux 1, Talence (2002). 14. M. Aoun, Syst`emes lin´eaires non entiers et identi?cation par bases or- thogonales non enti`eres, Ph.D. thesis, Universit´e Bordeaux 1, Talence (2005). 15. R. Malti, S. Victor, A. Oustaloup, H. Garnier, et al., An optimal instru- mental variable method for continuous time fractional model identifica- tion, in: The 17th IFAC World Congress, 2008. 16. L. Zeng, P. Cheng, W. Yong, Subspace identification for commensu- rate fractional order systems using instrumental variables, in: 2011 30th Chinese Control Conference (CCC), IEEE, 2011, pp. 1636–1640. 17. R. Malti, T. Ra¨ıssi, M. Thomassin, F. Khemane, Set membership param- eter estimation of fractional models based on bounded frequency domain data, Communications in Nonlinear Science and Numerical Simulation 15 (4) (2010) 927–938. 18. D. Val´erio, J. S. da Costa, Identification of fractional models from fre- quency data, in: Advances in Fractional Calculus, Springer, 2007, pp. 229–242. 19. D. Val´erio, M. D. Ortigueira, J. S. da Costa, Identifyng a transfer func- tion from a frequency response, Journal of Computational and N 3 (2) (2008) 021207–1. 20. D. Val´erio, I. Tejado, Identifying a noncommensurable fractional transfer function from a frequency response, Signal Processing 107 (0) (2015) 254 – 264, special Issue on ad hoc microphone arrays and wireless acoustic sensor networks Special Issue on Fractional Signal Processing and Applications. doi:http://dx.doi.org/10.1016/j.sigpro.2014.03.001. 21. URL http://www.sciencedirect.com/science/article/pii/S016 5168414000954 22. F. Khemane, R. Malti, T. Ra¨ıssi, X. Moreau, Robust estimation of fractional models in the frequency domain using set mem- bership methods, Signal Processing 92 (7) (2012) 1591 – 1601. doi:http://dx.doi.org/10.1016/j.sigpro.2011.12.008. 23. URL http://www.sciencedirect.com/science/article/pii/S016 5168411004415 24. E. Ivanova, R. Malti, X. Moreau, Frequencydomain subspace system identification with fractional differentiation models, in: Mechatronic and Embedded Systems and Applications (MESA), 2014 IEEE/ASME 10th International Conference on, 2014, pp. 1–6. 25. P. Nazarian, M. Haeri, M. S. Tavazoei, Identifiability of fractional order systems using input output frequency contents, ISA Transactions 49 (2010) 207–214. I. Podlubny, Fractional Differential Equations, Academic Press, 1999. 26. C.F.Chen, C.H.Hsiao, Haar wavelet method for solving lumped and dis- tributed parameter systems, IEE Proceedings-Control Theory and Ap- plications 144 (1) (1997) 87–94. 27. C. Wang, On the generalization of block pulse operational matrices for fractional calculus and applications, Journal of the Franklin Institute 315 (2) (1983) 91–102. 28. C.-H. Wang, Genmatrices block-pulse operational matrices and their applications to operational calculus, International Journal of Control 36 (1) (1982) 67–76. 29. M. Lakestani, M. Dehghan, S. Irandoustpakchin, The construction of operational matrix of fractional derivatives using B-spline functions, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 1149–1162. 30. A.Saadatmandi, Bernstein operational matrix of fractional derivatives and its applications, Applied Mathematical Modelling 38 (4) (2014) 1365 – 1372. doi:http://dx.doi.org/10.1016/j.apm.2013.08.007. 31. URL http://www.sciencedirect.com/science/article/pii/S030 7904X13005143 32. M. Lakestani, M. Dehghan, S. Irandoustpakchin, The construction of operational matrix of fractional derivatives using B-spline functions, Communications in Nonlinear Science and Numerical Simulation 17 (3) (2012) 1149 – 1162. doi:http://dx.doi.org/10.1016/j.cnsns.2011.07.018. 33. URL http://www.sciencedirect.com/science/article/pii/S100 7570411003868 34. E.Babolian, F. Fattahzadeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Applied Mathematics and Computation 188 (2007) 417–426. 35. H. Danfu, S. Xufeng, Numerical solution of integro-differential equa- tions by using CAS wavelet operational matrix of integration, Applied Mathematics and Computation 194 (460–466). 36. M. Yi, J. Huang, Wavelet operational matrix method for solving frac- tional differential equations with variable coefficients, Applied Mathe- matics and Computation 230 (2014) 383–394. 37. K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley-Interscience, 1993. 38. Y. LI, Solving a nonlinear fractional differential equation using Cheby- shev wavelets, Communications in Nonlinear Science and Numerical Simulation 15 (9) (2010) 2284 – 2292. 39. Y. Tang, H. Liu, W. Wang, Q. Lian, X. Guan, Parameter identification of fractional order systems using block pulse functions, Signal Processing 6 (5) (2015) 6–11.


Записи созданы 442

Похожие записи

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх