Номер части:
Журнал
ISSN: 2411-6467 (Print)
ISSN: 2413-9335 (Online)
Статьи, опубликованные в журнале, представляется читателям на условиях свободной лицензии CC BY-ND

CONTROL OF THE DYNAMICS OF A COMPLEX SYSTEM (6-11)



Науки и перечень статей вошедших в журнал:
DOI: 10.31618/ESU.2413-9335.2019.5.69.498
Дата публикации статьи в журнале: 2020/01/11
Название журнала: Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале, Выпуск: 69, Том: 5, Страницы в выпуске: 6-11
Автор: Ismailov Bahram Israfil
PhD, Azerbaijan State Oil and Industry University, Baku
Анотация: The article is devoted to the analysis and control of the development of dynamic processes in multidimensional chaotic systems. The research scheme is presented and the rationale for the methods used is given. According to the research algorithm, on the example of interactions of a system consisting of interconnected objects, the features of controlling their dynamics in the framework of the Open System are shown. The results of analytical and numerical modeling of the system behavior during interaction in the interference field and the possibility of controlling its dynamics are presented in graphical form. As an example, in the identified areas of interest of the researcher, the results of calculations of informative parameters, such as Poincare diagrams, Tsallis entropy, Lyapunov exponents, stability indices, fractal dimension are shown. The main informational and dynamic characteristics of the process under study allow us to visually evaluate its behavior and choose an impact control strategy that is satisfactory to the researcher
Ключевые слова: chaotic processes, hyperchaotic systems,Poincare recurrence,Tsallis entropy,Lyapunov exponent,
Данные для цитирования: Ismailov Bahram Israfil . CONTROL OF THE DYNAMICS OF A COMPLEX SYSTEM (6-11) // Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале. Технические науки. 2020/01/11; 69(5):6-11. 10.31618/ESU.2413-9335.2019.5.69.498

Список литературы: 1.Sprott J.C., Chaos and Time Series Analysis, Oxford University Press, Oxford, 2003. 507p. 2.Grigorenko I. and Grigorenko E. (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91 (3): 034101. https://doi.org/10.1103/PhysRevLett.91.034101. 3.Ibedou I. and Miyata T. (2008). The theorem of Pontrjagin-Schnirelmann and approximate sequences. New Zealand Journal of Mathematics, 38: pp. 121-128. 4. Vladimirsky E.I., Ismailov B.I. Transient and recurrence processes in open system. International Journal of Advanced and Applied Sciences (IJAAS), 4(10) 2017, pp.106-115. 5. Ismailov B.I. Analysis Simulation of Interaction Information in Chaotic Systems of Fractional Order. International Journal of Engineering and Applied Sciences (IJEAS). 2017. Vol.4, issue 6. pp.85-91. 6. Ismailov B.I. Poincare recurrence in open systems. Journal of Multidisciplinary Engineer in Science and Technology (JMEST). Vol. 3, ISSUE 9, 2016. Pp. 5565-5569. 7.Poincaré H. (1890) Sur la problem des trois corps et les équations de la dynamique. Acta Mathematica. 13: pp. 1–271. 8.Eckman J., Kamphorst S., Ruelle D., Recurrence Plots of Dynamical Systems, Europhysics Letters, 4 (9), 1987. Pp. 973-977. 9.Webber C.L., Zbilut J.P. Recurrence quantification analysis of nonlinear dynamical systems. Chapter 2. In: Riley MA, Van Orden G (eds) Tutorials in contemporary nonlinear methods for the behavioural sciences, pp. 26–92 https://www.nsf.gov/pubs/2005/nsf05057/nmbs/nmbs. pdf. Accessed 5 July 2018. 10.Ismailov B.I. Thermodynamic – Informational Paradigm in the Context of the Formation of a Mathematical Model of Transient Processes in an Open System. European Journal of Engineering Research and Science Vol. 2, No. 10, 2017. pp. 17-20. 11. Bruce Hobbs and Alison Ord. Nonlinear dynamical analysis of GNSS data: quantification, precursors and synchronization. Progress in Earth and Planetary Science. 2018. 35p. 12. Liu J and Teel AR. Hybrid systems with memory: modelling and stability analysis via generalized solutions. IFAC Proceedings, 2014. Volumes, 47(3): 6019-6024. 13. Tsallis C. and Ugur Tirnakli. Nonadditive entropy and nonextensive statistical mechanics- some central concept and recent applications. Journal of Physics: Conference Series 201. 2010. – pp. 1-16. 14. Ismailov B.I. Analysis and Control of Dynamic Processes in Mechanical Parts of Power Equipment. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD). 2018. Pp. 347-352. 15. Vladimirsky E.I., Ismailov B.I. Physics of Open System. Non-standard approaches in the context of studies of multidimensional coupled chaotic systems of fractional order. International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE), IEEE Bhubaneswar Subsection. India. 2018. Pp. 229-230. 16. Hegari A.S., Matouk A.E. Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system. Applied Mathematics Letters 24, 2011. Pp. 1938-1944. 17. Srivastava M. and all. Chaos control of fractional order Rabinovich–Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich–Fabrikant system. Applied Mathematical Modelling. Volume 38, Issue 13, 1 July 2014, Pp. 3361-3372. 18. Han Qiang, SunLei, Zhu Darui, Liu Chongxin. A four-dimension fractional order hyperchaotic system derived from Liu-system and its circuit research. http://www.paper.edu.cn 19. Laskin N., Lambadaris I., Harmantris, Devetsikiotis M. Fractional Levy Motion and Its Applications to Network Traffic Modeling. [Text]. // Computer Networks, vol. 40, issue 3, 2002. Pp. 363375. Doi>10.1016/S1389-1286(02)00300-6. 20. Dubkov A.A., Spagnolo B., Uchikin V.V.. L´evy Flight Superdiffusion: An Introduction. Bifurcation and Chaos· September 2008. DOI: 10.1142/S0218127408021877 · Source: DBLP. 21. Kuramoto Y. 1975. Self-entrainment of a population of coupled non-linear oscillators. Int. Symp. on Mathematical Problems in Theoretical Physics (Lecture Notes in Physics) ed H Araki (Berlin: Springer) pp. 420–422. 22. Murray Shanahan. Metastable chimera states in community-structured oscillator networks. Chaos 20, 013108. 2010. 23. Vladimirskiy E.I. Otobrazhenie printsipov refleksii v matematicheskoy modeli prinyatiya udovletvoritelnyih resheniy. Tr. IV Mezhd. Konferentsii «Identifikatsiya sistem i zadachi upravleniya», SICPRO’05. Moskva 25-28 yanvarya 2005. M.: Institut problem upravleniya im. V.A.Trapeznikova RAN. 2005. Pp. 1681-1688.


Записи созданы 9819

Похожие записи

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх
404: Not Found404: Not Found