Site icon Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале

АЛГОРИТМ ОБНАРУЖЕНИЯ ДВИЖУЩИЕГОСЯ ОБЪЕКТА В ВИДЕОСИГНАЛЕ

Введение

На сегодняшний день эффективной мерой противодействия несанкционированному доступу к магистральным нефтепродуктопроводам считается круглосуточная вооруженная охрана специально созданными подразделениями служб безопасности [1].  Так же проводится разработка автоматизированных средств, позволяющих сократить использование человеческих ресурсов для охраны протяженных объектов. Наблюдается интенсивная научная проработка принципов, положенных в основу таких средств. За прошедшие 4 года в базе данных WebofScience зарегистрировано 80 публикаций, посвященных этому вопросу, в Scopus – 55, в РИНЦ – 66. Патентными ведомствами Европы, США, России выдано соответственно 40, 13, 22 охранных документов, нацеленных на обеспечение безопасности магистральных продуктопроводов. Проанализировав эти документы можно сделать вывод,  что успех в решении обозначенной проблемы будет достигнут при переходе на мультисенсорные системы [2], так как в системах с распределенным оптоволоконным сенсором не снят вопрос по нейтрализации помех естественного и искусственного происхождения и идентификации вида вторжений [3], а в других системах (виброакустическая [4], тепловизионных воздушных [5]) есть ограничения по экономическим показателям. Проблемы перечисленных выше систем частично решаются  включением в состав мультисенсорных комплексов видеоаналитических систем [6].

Подходы по обнаружению нарушителей

Видеоаналитикой называют технологию компьютерного анализа видеоданных, позволяющей автоматизировано (без участия оператора) принимать решение о состоянии объекта наблюдения.

В опубликованных работах по замене человека автоматом для обнаружения движущегося в контролируемой зоне нарушителя использовались «разностные» алгоритмы, реализующие операцию вида

,

где Ii – новый i-й кадр видеопоследовательности, IВ – изображение фона (может использоваться предыдущий кадр Ii-1, так и принятая модель фона). В ряде работ модель фона представлена суммой нескольких случайных полей с нормальными распределениями.

Несколько иная модификация алгоритма основана на анализе областей значительного изменения яркости, выделяемых по следующему правилу [7]

где Ii (x, y) – значение яркости пикселя с координатами (x, y) в i-м кадре видеопоследовательности, α – уровень принятия решений о принадлежности пикселя к отображающим движение. Можно указать также на статистический подход, определяющий принадлежность пикселя нового кадра выбранной модели фона [8].

Перечисленные подходы объединяет идея: движению субъекта сопутствует локальное изменение интенсивности наблюдаемого изображения.

О достигнутом уровне надежности обнаружения субъектов с использованием «разностных» алгоритмов можно судить по результатам тестирования на наборе тестовых данных CabTechPedestrianDataset: одно ложное обнаружение в кадре при вероятности пропуска цели 0,15 на расстоянии до 20 м (размер нарушителя 80–160 пикселей) [9]. На расстоянии 60 м (размер нарушителя 30–80 пикселей) при том же уровне ложных тревог вероятность пропуска цели составила 0,66 [10].

С учетом приведенных сведений вырисовываются первоочередные задачи по усовершенствованию видеоаналитических систем: повышение надежности обнаружения вторжений на территорию ограниченного доступа и увеличение протяженности контролируемой зоны при сохранении вероятностей ошибок 1-го и 2-го рода на прежнем уровне.

Алгоритм повышения надежности видеоаналитических системах обнаружения

Нарушитель слабо различим на значительном расстоянии на фоне шумов, вызванных природными фонами и осадками, при использовании только разницы двух изображений.

Можно показать, что значение яркости любого отдельного пикселя с координатами х и у Ix,y(t) кадров видеоряда является случайным процессом от времени t. Следовательно, и разница ID(t,ti) будет являться случайным процессом, поэтому в результате сложения случайных величин с одинаковым распределением величина ID будет сходиться для каждого пикселя к математическому ожиданию интенсивности природных шумов при неограниченном увеличении числа используемых кадров N:

.                                                                        (1)

При появлении в видеопоследовательности нарушителя в каждом разностном изображении ID(t,ti) появляется участок, для которого интенсивность изменения фона равна нулю в случае динамического фона и просто меньше интенсивности окружающего шума в случае осадков и перекрытия.

Накопление достаточного количества кадров позволяет повысить отношение сигнал/шум изображения. Правило принятия решения о принадлежности пикселя фону или движущемуся объекту описывается следующим выражением:

                                                                       (2)

где α – адаптивный уровень принятия решения об обнаружении движения на основе текущей интенсивности природных шумов.

После получения бинарного изображения накопленных разностей IT (2) последовательно применяется серия операций:

Найденные сегменты, соответствующие по размеру человеку, выделяются описывающим прямоугольником. Центр прямоугольника считается центром обнаруженного нарушителя.

Каждая выделенная прямоугольная область R описывается четырьмя параметрами R(hR, wR, xR, yR): высота hR, ширина wR и координаты центра xR, yR области в пространстве экрана.

Множество выделенных прямоугольных областей i-го кадра Ri является множеством кандидатов в нарушители. Окончательное решение о появлении нарушителя определяется при сравнении множества Ri с множествами кандидатов предыдущих кадров путем сопоставления размеров и координат кандидатов:

                          (3)

То есть выделенная прямоугольная область R будет признана нарушителем, только если в предыдущих кадрах были выделены области сопоставимых размеров в том же самом или близком месте. Это позволяет повысить надежность детектирования за счет включения информации о непрерывности движения крупных объектов.

Выражение (3) обеспечивает привязку выделенных нарушителей из нового кадра к нарушителям из предыдущего, таким образом, осуществляя отслеживание траектории движения субъекта.

Алгоритм обработки каждого нового кадра видеопотока выглядит следующим образом:

В результате работы алгоритма в каждом кадре выделяется следующая информация:

Нарушитель считается обнаруженным, если отклонение оценки координат его центра не отличается от истинных более чем на половину высоты человека.

Результаты испытаний разработанного алгоритма при различных окружающих условиях приведены в таблице 1.

Таблица 1.

Результаты испытания алгоритма

Видеосюжет Вероятность пропуска цели, p0 Вероятность ложной тревоги, p1
«Двор» 0,003±0,001 0,041±0,003
«Периметр» 0,125±0,010 0,175±0,012
«Периметр-снег» 0,171±0,014 0,298±0,017

При определенных погодных условиях видеоаналитическая система обеспечивает результаты обнаружения вторжений на территорию ограниченного доступа на требуемом на современном этапе уровне. В более сложных условиях она позволяет существенно улучшить показатели мультисенсорной системы, в состав которой она входит.

Выводы

Проанализировав разрабатываемые и существующие системы обнаружения вторжений на охраняемую территорию, были сделаны выводы о включении в состав мультисенсорных комплексов видеоаналитических систем. Был разработан алгоритм, позволяющий обнаруживать движущийся объект при различных природных условиях. Экспериментально была подтверждена надежность разработанного алгоритма, подтверждающая необходимость использования видеоаналитической системы при охране протяженных объектов.

Список литературы:

  1. Дегтярев В.А. Против террористической угрозы / В.А. Дегтярев, С.Л. Родионов // Трубопроводный транспорт нефти. – 2010. – № 9. – С. 20–22.
  2. Dubski R. Concept of data processing in multi-sensor system for perimeter protection / R. Dubski, Kastek M., Tezaskawka P., Pirtkowski T., Szustakowski M., Zyczkowski M. // Conference on Sensors, and Command, Control, Communications, and Intelligence (CЗI) Technologies for Homeland Security and Homeland Defense X. – 2011. – vol. 8019. – N 8019OX.
  3. Wang J. FBG Intrusion Recognition Algorithm Based on SVM / J. Wang // Advanced Materials Research. – 2012. – vol. 591–593. – pp. 1422–1427.
  4. Епифанцев Б.Н. Акустический метод диагностики состояния подземных трубопроводов: новые возможности / Б.Н. Епифанцев // Дефектоскопия. – 2014. №5. – С. 9–13.
  5. Epifansev B. N. Remote Thermal Emission Diagnostics for Underground Pipelines / B. N. Epifansev // Russian Journal of Nondestructive Testing. – 2014. vol.50. – N. 3, pp. 154–163.
  6. Buch N. Local feature saliency classifier for real-time intrusion monitoring / N. Buch, S. Velastin // Optical Engineering. – 2014. – vol. 57. – N 073/08.
  7. Lipton A.J. Moving target classification and tracking from real-time video / A.J. Lipton, H. Fujiyoshi, R.S. Patil // Fourth IEEE Workshop on Applications of Computer Vision’98: Proceedings, 1998, P. 8–14.
  8. Haritaoglu I. W4: real-time surveillance of people and their activities / L.Haritaoglu, D. Harwood, L.S. Davis // IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 22, N. 8, 2000, pp. 831–843.
  9. Viola P.A. Detecting pedestrians using patterns of motion and appearance / P.A. Viola // Journal of Computer Vision, vol. 63, no. 2, 2005, P. 153–161.
  10. Dollar P. Pedestrian Detection: An Evaluation of the State of the Art / P.Dollar, C. Wojek, B. Schiele, P. Perona // IEEE Trans. On Pattern Analysis and Machine Intelligence. – 2012. – vol. 34. – N 4. – pp. 743–761.[schema type=»book» name=»АЛГОРИТМ ОБНАРУЖЕНИЯ ДВИЖУЩИЕГОСЯ ОБЪЕКТА В ВИДЕОСИГНАЛЕ» description=»На основании анализа опубликованных работ по обеспечению безопасности критически важных объектов сделан вывод о необходимости разработки видеоаналитической системы для обнаружения несанкционированных вторжений на территории ограниченного доступа. Предложен алгоритм для решения поставленной задачи, основанный на реализации принципов накопления и разностных алгоритмов. Приведены оценки вероятностей 1-го и 2-го рода, обеспечиваемые предложенным алгоритмом обнаружения вторжений.» author=»Копейкин Степан Андреевич» publisher=»БАСАРАНОВИЧ ЕКАТЕРИНА» pubdate=»2017-03-03″ edition=»ЕВРАЗИЙСКИЙ СОЮЗ УЧЕНЫХ_27.06.2015_06(15)» ebook=»yes» ]

404: Not Found404: Not Found