Link slot gacor adalah pilihan unggulan untuk menikmatislot gacordengan fitur modern, RTP tinggi, dan kesempatan meraih maxwin setiap hari. Temukan keseruan bermainslot onlineserver Thailand yang terkenal stabil dan gacor di tahun 2025. Proses deposit instan memudahkan kamu menjajalslot qrisdengan RTP menguntungkan di IJP88. Saksikan juga serunyastreaming boladalam kualitas tinggi dan koneksi anti-lag di setiap pertandingan. Jangan lewatkan jugaslot gacor terbaruuntuk update game dan promo terkini dari situs terpercaya. Kamu juga bisa cobasitus slot gacordengan koleksi game lengkap dan RTP tinggi. Jangan lupa nikmati juga slot gacor maxwin yang bisa jadi pilihan utama di antara banyak situs populer. Untuk kemudahan transaksi, gunakan layananSlot Danasebagai metode deposit yang cepat dan aman. Coba juga berbagai slot demo gratis untuk latihan dan hiburan tanpa risiko.
ПРИКЛАДНЫЕ ЗАДАЧИ И ПРИНЦИПЫ ПОСТРОЕНИЯ ИХ СИСТЕМЫ | Евразийский Союз Ученых - публикация научных статей в ежемесячном научном журнале
Site icon Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале

ПРИКЛАДНЫЕ ЗАДАЧИ И ПРИНЦИПЫ ПОСТРОЕНИЯ ИХ СИСТЕМЫ

С понятием прикладной направленности курса математики тесно связно понятие прикладной задачи.

Анализ научно-методической литературы дает возможность выделить три направления, в соответствии с которыми исследователи формулировали определения понятия “прикладная задача”:

— “деятельностное” — в качестве основного понятие образующего признака в определении прикладной задачи выделяется признак, связанный с обучением учащихся деятельности по применению математики для решения различных задач (и даже не обязательно для решения задач нематематической природы). Таковы определения, предлагаемые, например, исследователями Г.М.Морозовым [1], Н.В.Чангом [2]. Наиболее характерной для такого направления является формулировка определения прикладной задачи Д.Икрамова, в соответствии с которой она “характеризуется не тем, что в ее содержании используются практические данные, а тем, что в ходе ее решения используются приемы, способы и методы, характерные для деятельности в области применения математики” [3, 180с.];

— “содержательное” – в определении понятия “прикладная задача” доминирующей является содержательная компонента, указывающая область человеческой деятельности, из которой взята задача (“жизненная” или “практическая” ситуация, производство, “задачи из быта” и т.д.). Представителями этого направления являются Е.Я.Жак [4], В.В.Фирсов [5] и другие для которых задачи прикладного характера –это задачи, возникающие в “технике и смежных науках; в профессиональной деятельности; в народном хозяйстве и быту;

— “содержательно-деятельностное” – как правило, дизъюнктивная или конъюнктивная конструкция определений первых двух направлений, т.е. в определение “прикладной задачи” закладывается деятельностная и (или) содержательная компоненты.

Нельзя не заметить также, что эти формулировки в разной степени общности отражают различные аспекты одного и того же понятия – понятия “прикладной задачи” как основного объекта прикладной математики.

Для дальнейшего анализа определения понятия “прикладная задача” и обоснования определения, выдвигаемого в данной работе, рассмотрим кратко процесс решения реальной задачи в современной инженерно-физической практике.

Следуя по аналогии концепции категории”реального” в теоретических построениях А.Я.Сапогова [6], будем называть задачи, возникающие в реальной практике, «“реальными задачами”.

Решение реальной задачи состоит из последовательного решения нескольких задач. Термин “этап”, используемый в методической литературе при решении прикладной (термин, принятый в методике) задачи, — это, по существу, задача, причем в любой трактовке этого понятия (психологической, кибернетической и т.д.), поэтому предпочтительнее говорить не об “этапах” в решении задачи, а о задачах или подзадачах, решение которых ведет к получению ответа поставленной реальной задачи. Т.е. структура реальной задачи – это система задач. Системообразующий фактор – логика реальной задачи.

Соглашаясь с устоявшимся в методике преподавания математики представлением о решении прикладной задачи по трехэтапной схеме (формализация, внутримодельное решение, интерпретация), в дальнейшем будем говорить не об этапах, а о задачах, соответствующих определенному этапу. Саму эту схему решения задачи можно рассматривать как первичное дидактическое приближение процесса решения как первичное дидактическое приближение процесса решения реальной задачи. Построенное таким образом решение в большей степени соответствует логике чистой математики и может рассматриваться как предельной случай процесса решения реальной задачи.

Рассмотрим кратко задачи, которые чаще всего составляют процесс решения реальной задачи.

  1. Задача математического моделирования связана с установлением возможности и, если что осуществимо, построением математической модели изучаемого процесса или явления, т.е. перевода исходной задачи из терминов данной предметной области на математический язык. В инженерно-физической практике чаще всего под моделью объект М, если он строится для имитации А по этим характеристикам. Решением задачи математического моделирования является построенная математическая модель (например, в форме алгебраических, дифференциальных, разностных и т.д. уравнений и ограничений). Часто случается так, что решение поставленной задачи исчерпывается решением только этой задачи, так как полученная модель уже известна и известно решение, отвечающее ей. Поэтому можно говорить о задаче математического моделирования как об отдельной задаче, представляющей самостоятельный интерес.
  2. Решение задачи математического моделирования инициирует постановку задачи решения полученной системы уравнений и ограничений. В подавляющем большинстве случаев решение осуществляется с помощью приближенных методов (численных методов) и сводится к построению вычислительного алгоритма с выполнением всех требований, предъявляемых к алгоритмам: массовости, результативности, детерминированности, конечности числа шагов. В качестве решения этой задачи выступает построенный вычислительный алгоритм. В настоящее время – это, чаще всего, ответ реальной задачи. Известно, что задачи этого типа породили такую ветвь прикладной математики как, например, теория алгоритмов.
  3. Вычислительные алгоритмы решения реальных задач, как известно, “вручную” реализуют с большими техническими трудностями, поэтому требуется применения средств вычислительной техники, а значит возникает задача программирования полученного алгоритма. На практике результатов решения этой задачи может быть информация, представленная в числовой, графической или иной форме.
  4. Анализ и интерпретация результатов – завершающая стадия решения реальной задачи. Здесь важным является умение решать качественные задачи с использованием полученных результатов для принятия решения о возможности их практического применения.

Все перечисленные задачи “равноправны” с точки зрения сущности определения понятия “задача”. Они могут рассматриваться (и рассматриваются в рамках прикладной математики) независимо друг от друга. Именно поэтому утверждается, что в общем случае решение реальной задачи может и не идти по трехэтапной схеме, а к прикладной можно отнести любую из рассмотренных выше задач, являющихся в настоящее время элементами прикладной математики.

Как показывает опыт использования ранее разработанных систем прикладных задач, дидактически оправданными являются следующие принципы их построения [2, 18 и др.]:

-принцип постоянства, в соответствии с которым ПЗ появляются в рамках учебного процесса постоянно;

-принцип расположения задач в порядке возрастания трудности;

-принцип постепенности, предполагающий постепенное развитие умений учащихся, связанных с моделированием практических ситуаций;

-принцип полноты – стремление возможно полнее отразить в СПЗ математические идеи, а также привести примеры, относящиеся к различным отраслям знаний (физика, химия, биология и т.д.).

Н.В.Чанг, М.И.Якутова и др. справедливо полагают, считая нижеследующее утверждение принципов, что “система задач должна быть разработана на основе учебного плана и программы для общеобразовательной школы” [7, 26с.].

Для построения системы прикладных задач в работе сформулированы следующие принципы:

-принцип учета особенностей мыслительной деятельности студентов колледжа, т.е. учитывается переходной от левополушарного к правополушарному тип индивидов;

-принцип историзма – стремление включить в систему задач такие, которые оказали существенное влияние на развитие науки и техники;

-принцип уровневой дифференциации, в соответствии с которым одна и та же задача может формулироваться по-разному в зависимости от подготовленности группы студентов колледжа;

-принцип многовариантности решения задачи, т.е. стремление ввести в СПЗ такие задачи, решение которых может быть получено различными методами и осуществить эти решения;

-принцип профессиональной ориентации – стремление наполнить СПЗ задачами, характерными для будущей профессиональной деятельности не только по содержанию, но и по методам их решения;

-принцип рефлексии – как отражение дидактической функции ПЗ заключается в том, что в СПЗ есть задачи, в которых:

а) обнаруживается потребность к обобщению и систематизации математических фактов;

б) возможно введение нового математического понятия;

в) разрабатывается или демонстрируется некоторый математический прием или метод.

В рамках исследования нами выделены следующие требования к прикладным задачам, именно, задачи должны быть

-ориентированы на развитие определенных качеств личности (требование, продиктованное современными личностно-ориентированными тенденциями в образовательных системах);

-служить дидактическим целям обучения;

-предусматривать органическую связь с системой математических понятий курса математики колледжа;

-формировать у учащихся умения применять математические знания для решения задач;

-включать содержание максимально возможно приближенное к тематике будущей профессиональной деятельности (по мнению академика Л.Д.Ландау).

В предлагаемом исследовании функции прикладных задач те же, что и выделенные выше. Но в силу специфики рассматриваемого профильного направления обучения, эти функции получают усиление, что приводит к качественно иному взгляду на роль прикладных задач (ПЗ) в курсе математики университета. Например, такой компонент социально-педагогической функции, как выбор профессии, имеет своим продолжением функцию первичной подготовки к выбранной деятельности, т.е. выработку начальных профессиональных (предпрофессиональных) умений и навыков.

Список литературы:

  1. Морозов Г.М. О формировании умений, необходимых для построения математических моделей //Перспективы развития математического образования всредней школе в 90 – х годах – М.: НИИ СиМО АПН СССР, 1987—с, 36 – 37.
  2. 2. Чанг Н.В. Прикладная направленность обучения элементам математического анализа в средней в школе СРВ. – Дисс. … канд. пед. наук – М., 1994 – 141с.
  3. 3. Икрамов Д. Математическая культура. – Ташкент, УкиТУВЧИ, 1995 – 277 с.
  4. 4. Жак Я.Е. Производственные задачи в школьном курсе математики // Математики в школе, 1983 – № 5 – с. 15 – 19.
  5. 5. Фирсов В.В. Некоторые проблемы обучения теории вероятностей как прикладной дисциплине: Дисс. … канд. пед. наук. –М., 1974 – 161 с.
  6. 6. Сапогов А.Я. Основы реального исчисления. – С. – Петербург, Новый Геликон, 1995 – 44 с.
  7. 7. Величко Е.В. Реализация прикладной направленности курса алгебры: Автореф. … канд. пед. наук. – М., 1987 – 23 с.[schema type=»book» name=»ПРИКЛАДНЫЕ ЗАДАЧИ И ПРИНЦИПЫ ПОСТРОЕНИЯ ИХ СИСТЕМЫ» description=»В статье выделены направления которые определены понятием “прикладной задачаи”. Рассмотрены построение математической модели. Определены основные направления в понимании сущности и реализации связи теории с практикой. В результате определены принципы построения прикладных задач.» author=»Бекболганова Алма Кусаиновна, Ахметова Гульнур, Мухаева Арайлым» publisher=»БАСАРАНОВИЧ ЕКАТЕРИНА» pubdate=»2017-01-31″ edition=»ЕВРАЗИЙСКИЙ СОЮЗ УЧЕНЫХ_31.10.15_10(19)» ebook=»yes» ]

404: Not Found404: Not Found