УДК 669.052

СОГЛАСОВАНИЕ ФАКТОРОВ ИЗМЕЛЬЧЕНИЯ И ФЛОТАЦИИ МЕДНОСУЛЬФИДНЫХ РУД

DOI: 10.31618/ESU.2413-9335.2020.1.72.618

А.М. Макашева1

д.т.н., профессор

А.Т. Ескара¹ магистрант кафедры НТМ

Т.Е. Слушашов²

студент 2 курса кафедры КИИБ

 1 Карагандинский государственный технический университет

²Международный университет информационных технологий

АННОТАЦИЯ

В данной статье показано составление плана многофакторного эксперимента по взаимосогласованному воздействию факторов измельчения и флотации медносульфидных руд и проведение экспериментов. Проведена оценка воспроизводимости результатов измельчения руды в лабораторной шаровой мельнице и с помощью критерия Кохрена определена ошибка эксперимента с доверительным интервалом, не превышающем 5%, что является приемлемым для технологических процессов.

Ключевые слова: измельчение, флотация, медносульфидные руды, математическое планирование, метод Зейделя-Гауса

Введение

Задача отображения совместного воздействия факторов измельчения и флотации является актуальной в связи с тем, что эти процессы осуществляются в непрерывном технологическом потоке и изменение режима измельчения сразу же вызывает перемены фракционного состава как в отношении содержания целевого продукта для флотации — класса —0,071 мм, так и выхода шламистой фракции размером 5-10 микрон, ухудшающей этот процесс.

В свою очередь, флотационный процесс благодаря возможности управления им с помощью собственных факторов позволяет подстраиваться под те или иные изменения фракционного состава и тем самым выявлять не какое-то единственно возможное наилучшее извлечение целевого компонента в концентрат, а целые области оптимальных режимов с комбинацией факторов измельчения и флотации для обеспечения извлечения не ниже заданного уровня, например, 90%.

Теоретическая часть

В принципе, эту задачу можно решить практически любым из известных методов математического планирования эксперимента с получением единой многофакторной модели. Исходя из специфики поставленной задачи эта модель должна обеспечивать получение расчетного значения по извлечению меди во флотационный концентрат не более 100%, а также не в виде отрицательной величины, то есть получения неабсурдных результатов при любой вариации режимных параметров, входящих в обобщенную математическую модель.

Этим условиям в наибольшей мере отвечают вероятностно-детерминированные методы математического планирования эксперимента, в которых предусмотрена возможность учета физического и математического смысла при

описании как частных, так и обобщенных зависимостей [1-5]. Среди них наибольшее распространение получил метод, основанный на использовании матриц идеального (наиболее экономного) хаоса в комбинации факторов и их уровней с дальнейшей обработкой результатов на частные зависимости, их математическим описанием с учетом физического смысла и окончательным объединением в виде уравнения Протодьяконова, то есть в виде нормированного произведения частных функций.

Эта процедура предлагалась взамен традиционного последовательного изучения частных зависимостей по методу Зейделя-Гаусса с постепенным выходом на наилучший результат, но без единого математического представления многофакторной функции.

Этот недостаток был преодолен путем нормировки смежных частных функций по их общему значению с обобщением на многофакторную зависимость типа уравнения Протодьяконова [2-4].

С целью более равномерного отображения обобщенной функции во всем многофакторном пространстве в реальных пределах изменения и воздействия каждого фактора дальнейшая адаптация метода Зейделя-Гаусса выразилась в такой организации эксперимента, когда нормировка частных зависимостей проводится по результатам центрального эксперимента y_{ii} , которые входят в каждую частную зависимость $y_i = f_i(x_i)$:

$$y = y_{\text{II}} \frac{y_1}{y_{\text{II}}} \cdot \frac{y_2}{y_{\text{II}}} \cdot \frac{y_3}{y_{\text{II}}} \dots \frac{y_n}{y_{\text{II}}} = \frac{\prod_{i=1}^n y_i}{y_{\text{II}}^{n-1}}.$$
 (1)

В этом случае общее число опытов сокращается на число факторов минус единица.

После получения данного уравнения и использования известных процедур его ограничения [6, 7] оно может быть применено для построения многофакторных намограмм-матриц с выделением областей допустимых и недопустимых сочетаний уровней факторов, а тем самым и для управления процессом [8].

Соответствующий план и результаты эксперимента применительно к задаче данного раздела приведены в таблице 1.

Опыты проводили на медносульфидной руде Саякского месторождения с содержанием меди 0,63%. Флотацию измельченной руды проводили на лабораторной флотомашине 237ФЛ-Д.00.000.РЭ, частота вращения импеллера 900-3400 об/мин.

Таблица 1 План и результаты эксперимента по воздействию факторов измельчения и флотации на содержание и извлечение меди из руды в концентрат. Выделены данные для центрального опыта и лля информационного оптимума

для информационного оптимума											
Факторы	Уровень фактора	Извлечение меди в концентрат, є		Содержание меди в концентрате, α		Информационный критерий					
1		%	д.е.	%	д.е.	операции αε, д.е.					
1	2	3	4	5	6	7					
Продолжительность измельчения, $\tau_{\rm u}$, мин, при $K=120~{\rm r/r},~B=40~{\rm r/r},~\tau_{\varphi}=6~{\rm мин}$	10	66,18	0,6618	17,30	0,1730	0,1145					
	15	73,13	0,7313	16,83	0,1683	0,1231					
	<u>20</u> 25	78,31	0,7831	12,84	0,1284	0,1011					
	<u>)</u> 25	78,33	0,7833	9,39	0,939	0,0736					
	30	75,41	0,7541	14,34	0,1434	0,1081					
Расход ксантогената, K, г/т, при $\tau_{\text{H}} = 20$ мин, B = 40 г/т, $\tau_{\varphi} = 6$ мин	40	71,64	0,7164	13,38	0,1338	0,0960					
	80	77,05	0,7705	13,45	0,1345	0,1036					
	(120)	78,31	0,7831	12,84	0,1284	0,1006					
	160	81,82	0,8182	10,02	0,1002	0,0820					
	200	86,67	0,8667	8,48	0,848	0,0735					
Расход вспенивателя, В, г/т, при $\tau_{\text{H}} = 20$ мин, $K = 120$ г/т, $\tau_{\varphi} = 6$ мин	20	76,81	0,7681	12,47	0,1247	0,0990					
	30	79,69	0,7969	12,42	0,1242	0,0990					
	(40)	78,31	0,7831	12,84	0,1284	0,1006					
	50	72,73	0,7273	14,23	0,1423	0,1035					
	60	77,42	0,7742	12,72	0,1272	0,0985					
Продолжительность флотации, τ_{ϕ} , мин, при $\tau_{\text{и}} = 20$ мин, $B = 40$ г/т, $K = 120$ г/т	4	71,88	0,7188	13,25	0,1325	0,0952					
	5	75,41	0,7541	10,10	0,1010	0,0762					
	6	78,31	0,7831	12,84	0,1284	0,1006					
	\rightarrow	90,16	0,9016	12,08	0,1208	0,1089					
	8	89,39	0,8939	13,47	0,1347	0.1204					

Экспериментальная часть

проведения опытов первоначально проводили измельчение руды при указанных в таблице 1 продолжительностях процесса фракционного определением состава измельченного материала. По этим данным осуществляли адаптацию вероятностной модели измельчения с определением по выходу верхнего класса экспериментального значения энергии активации разрушения зерен E_a и по суммарному выходу нижнего класса -0,071 мм - параметра модели j^x . Это позволило уже расчетным путем находить содержание шламистой фракции – 5 мкм и оценить ее влияние на результаты флотации.

В любом случае важно оценивать воспроизводимость результатов эксперимента для того, чтобы определять адекватность описывающих эксперименты эти аппроксимирующих или фундаментальных зависимостей.

Воспроизводимость результатов эксперимента оценивали по критерию Кохрена (или Гохрена) [9]

$$G = \frac{S_{u \max}^2}{\sum_{u=1}^n S_u^2} \le G(0.05; f_n; f_u), \tag{2}$$

где $G(0,05;f_n;f_u)$ - нормативное значение критерия (определяется по статистическим таблицам) при 5% уровне значимости (или 95% уровне достоверности) для $f_n=n$ — числа независимых оценок результата (при разных условиях эксперимента) и f — числа степеней свободы каждой оценки, равного m — 1 при m параллельных опытов в независимых оценках; $S_{u\,max}^2$ - наибольшая дисперсия среди независимых оценок S_u^2 . Она определяется по формуле

$$S_u^2 = \frac{\sum_{p=1}^m (y_{u_p} - \bar{y}_u)^2}{m-1},$$
 (3)

в которой u – индекс независимого опыта; p – номер параллельного (повторного) опыта; y_{up} – результат p-го параллельного опыта; \bar{y}_u - среднее арифметическое всех параллельных результатов.

Результаты параллельных и независимых опытов по выходу целевого класса -0.071 мм при измельчении в лабораторной мельнице с различной

продолжительностью процесса приведены в таблице 2.

Выход класса –0,071 мм при различной продолжительности измельчения

Таблица 2

Продолжительность,	и	y_{u_1} , %	y_{u_2} , %	y_{u_3} , %	<u> 7</u> 7
мин	u	$yu_1, 70$	yu_2 , 70	yu_3 , 70	y_u
10	1	62,93	59,72	58,95	60,53
15	2	80,66	78,29	74,41	77,79
20	3	89,77	90,10	90,33	90,07
30	4	98,13	85,87	97,44	93,81

Обработка данных таблицы 2 дает следующие результаты для независимых экспериментов:

$$S_1^2 = \frac{(62,93 - 60,53)^2 + (59,72 - 60,53)^2 + (58,95 - 60,53)^2}{3 - 1} = 4,456,$$

$$S_2^2 = \frac{(80,66 - 77,79)^2 + (78,29 - 77,79)^2 + (74,41 - 77,79)^2}{3 - 1} = 9,956,$$

$$S_3^2 = \frac{(89,77 - 90,07)^2 + (90,10 - 90,07)^2 + (90,33 - 90,07)^2}{3 - 1} = 7,925 \cdot 10^{-2},$$

$$S_4^2 = \frac{(98,13 - 93,81)^2 + (85,87 - 93,81)^2 + (97,44 - 93,81)^2}{3 - 1} = 47,44.$$

$$G = \frac{47,44}{4,456 + 9,956 + 7,925 \cdot 10^{-2} + 47,44} = 0,7661.$$

По статистическим таблицам находим значение $G_{(0,05;4;2)} = 0,7679$. Отсюда следует

$$G = 0.7661 < G_{(0.05;4;2)} = 0.7679.$$

Неравенство соблюдается, эксперимент воспроизводим. Дисперсия воспроизводимости согласно формуле [7]

$$S_y^2 = \frac{\sum_{u=1}^n S_u^2}{n} \tag{4}$$

равна $S_v^2 = 61,925/4 = 15,48$, откуда находим ошибку эксперимента

$$S_y = \pm \sqrt{S_y^2} \tag{5}$$

равной $S_v = \pm \sqrt{15,48} = \pm 3,93\%$.

Доверительный интервал для 5% значимости статистических данных находится по формуле [8]

$$\delta = \pm \frac{t_{(0,05;f_y)}S_y}{\sqrt{n}},\tag{6}$$

где $t_{(0,05;f_y)}$ - коэффициент Стьюдента (находится по статистическим таблицам) для $f_y = f_\eta f_u = n(m-1)$ – числа степеней свободы дисперсии воспроизводимости. Табличное значение $t_{(0,05;8)} = 2,31$. С учетом полученных данных находим доверительный интервал в опытах по измельчению

$$\delta = \frac{2,31 \cdot 3,93}{\sqrt{4}} = \pm 4,54\%.$$

Такая точность экспериментальных данных вполне приемлема для технологических исследований [8] и будет использована для оценки адекватности аппроксимирующих зависимостей, получаемых при обработке результатов

многофакторного эксперимента. Воспроизводимость результатов по флотации обычно находится на таком же уровне.

Что касается информационного оптимума αε, приведенного в таблице 1, то согласно энтропийно-

информационного анализа технологических схем [10, 11], он отображает степень сбалансированности противодействующих показателей содержания и извлечения целевого компонента (в данном случае меди), и его наибольшее значение соответствует наилучшему сочетанию этих показателей.

Заключение

Составлен многофакторного план эксперимента взаимосогласованному по воздействию факторов измельчения и флотации медносульфидных проведены руд И соответствующие опыты. В качестве метода математического планирования эксперимента выбран метод последовательного изучения факторов по Зейделю-Гаусу в новом варианте его дополнения условиями центрального эксперимента с обобщением частных зависимостей путем их нормировки по результатам центрального эксперимента.

Проведена оценка воспроизводимости результатов измельчения руды в лабораторной шаровой мельнице и с помощью критерия Кохрена определена ошибка эксперимента с доверительным интервалом, не превышающем 5%, что является приемлемым для технологических процессов.

СПИСОК ЛИТЕРАТУРЫ

- 1 Малышев В.П. Математическое планирование металлургического и химического эксперимента. Алма-Ата: Наука КазССР, 1977. 37 с.
- 2 Малышев В.П. Вероятностнодетерминированное планирование эксперимента. – Алма-Ата: Наука КазССР, 1981. – 116 с.
- 3 Малышев В.П. Вероятностнодетерминированное отображение. – Алматы: Fылым, 1994.-376 с.

- 4 Малышев В.П. Математическое описание результатов многофакторного эксперимента, проведенного по методу Зейделя-Гаусса // Вестник АН КазССР. 1978. №4. С. 31-38.
- 5 Малышев В.П. Особенности экстраполяции и ограничения уравнения Протодьяконова // Вестник Ан КазССР. 1982. N2. С. 42-46.

6Агеев Н.Г. Моделирование процессов и объектов в металлургии: учебное пособие. – Екатеринбург: Издательство Уральского университета, 2016. – 108 с.

7Юдин Ю.В., Майсурадзе М.В., Водолазский Ф.В. Организация и математическое планирование эксперимента. — Екатеринбург: Издательство Уральского университета, 2018.

- 8 Малышев В.П. Кинетический и технологический анализ многофакторных математических моделей химикометаллургических процессов // КИМС. 2008. N5. c. 66-82.
- 9 Винарский М.С., Лурье М.В. Планирование эксперимента в технологических исследованиях. Киев: Наукова думка, 1975. 168 с.
- 10 Малышев В. П., Турдукожаева А.М., Кажикенова С.Ш. Обоснование информационной оценки качества технологических переделов и продуктов // Доклады НАН РК. 2008. № 6. С. 62-65.
- 11 Malyshev V.P., Kazhikenova S.Sh., Turdukozhaeva A.M. A Qualitative and Quantitative Evaluation of the Technological processes in the metallurgy of non-ferrous metals // Russian Journal of Non-Ferrous Metals. $-2009. Vol. 50. N \cdot 4. P. 335-337.$

УДК 004.02

ПРИМЕНЕНИЕ НЕЙРОННЫХ СЕТЕЙ К МАТРИЧНОМУ ДИФФЕРЕНЦИАЛЬНОМУ УРАВНЕНИЮ РИККАТИ

Зейналов ДЖ.И.

доктор комрютерных наук,

профессор кафедры информационные технологии Нахичеванский Государственный Университет

Маммадов Р.Т.

докторант кафедры информационные технологии Нахичеванский Государственный Университет

APPLICATION OF NEURAL NETWORKS TO THE RICCATI MATRIX DIFFERENTIAL EQUATION

Zeynalov J. I.

Doctor of Computer Science, Professor, Department of Information Technology Nakhchivan State University

Mammadov R.T.

doctoral student of the department of information technology Nakhchivan State University