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ABSTRACT.

The work is devoted to the study of a class of discrete pursuit games with a digital image level, which is
described by systems of second-order equations. Sufficient conditions are obtained for the possibility of complet-
ing the pursuit in discrete games with boundary conditions. When solving the problem of pursuit with the level of
a digital image, Chebyshev polynomials of the second kind are used.
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1. INTRODUCTION
The approach of applying a two-dimensional second derivative in the tasks of improving the brightness of a
digital image is reduced to the choice of a discrete formulation of the second derivative and to the subsequent
construction of a filter mask based on this formulation. Isotropic filters are considered, the response of which does
not depend on the direction of inhomogeneities in the image being processed. In other words, isotropic filters are
invariant to rotate, in the sense that rotating the image and then applying the filter produces the same result as the
initial application of the filter and then rotating the result.

The simplest isotropic operator based on derivatives is the Laplacian (the Laplace operator), which in the case
of a function of two variables, is defined as

0’1 01
_2+_2.
ox° 0y

Since derivatives of any order are linear operators, then the Laplacian is also a linear operator.

To apply this equation in digital image processing, it must be expressed in a discrete form. There are several
ways to set the Laplacian in discrete form based on the values of the neighboring pixels. The following definition
of a discrete second derivative is one of the most commonly used formulas. Taking into account that there are two

variables and notation Z(X, y)|(xi,y,-) = Z(Xi, yj ) =7

V= )

i for the partial second derivative with respect to X

, we get
0°z
6X2 :Z(Xi+1’yj)_22(xi’yj)+Z(Xi—l’yj) I+lj 22 +Z
(xiv;)
and, similarly for the partial second derivative Y, we get
0°1

W :Z(Xi’yj+1)_22(xi1yj)+Z(Xi1yj_1) |J+1 22 +Z
(xiy;)

The discrete formulation of the two-dimensional Laplacian given by (1) is obtained by combining these two

components
Vi, etz 2 2059, 20y, 2503,
+7Z
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So, as the Laplace operator is essentially the second derivative, its use underlines the discontinuity of the
brightness levels in the image and suppresses areas with weak changes in brightness. This results in an image
containing grayish lines at the site of contours and other gaps superimposed on a dark background without features.
But the background can be “restored”, while maintaining the effect of sharpening achieved by the Laplacian. To
do this, simply add the original image and the Laplacian. It should be remembered which of the definitions of the
Laplacian was used. If a definition using negative central coefficients was used, then obtaining the effect of in-
creasing the sharpness, the Laplacian image should be subtracted, not added. Thus, the generalized algorithm of
using the Laplacian for image enhancement is as follows.

z(xi,yj)—sz(xi,yj), ecau w(0,0) <0,
g(xi,yj)— z(xi,yj)+sz(xi,yj), ecau w(0,0) >0,

Where g(x, y) - processed image, Z(X, y) - input image, W(0,0) - value of the central coefficient of

the Laplacian mask. Hence it is clear that in order to improve the image as already noted, we must change the ie
drive Laplacian
2 —

Given the presence of noise, we obtain a model example of discrete games, the process of pursuing the equa-
tions described (show. [1] - [3])

-A47. . . . . . .. .. =—U: - . L < <
ST B I R TR I ks T R T B R I +”I,J"“h J“p"”" J“G’“p’
20,j =0, Z;mi,j =0, Zi0=0, Zjp =0, (*)
i=12,...mj=12,..6-1
_ o 0’1 %1 _ _
where the left side of the equation is a discrete analog of Laplacian —— + —— image brightness functions
oX~ oy
z=2(X,Y),a Zj,j — image brightness at a point, (X, yj) T.e. Zj j — the value of the brightness levels of the
image of the corresponding pixels (i, J), Uj j,u;, j — control parameters. Without loss of generality, it is con-
venient to assume that if either i =0, either i =m+1, either j =0, either j =46, that Zij = 0, those the
image is bordered by pixels with zero brightness levels. Harassment is considered complete if Zj satisfy the
condition: <7 j <5 +¢&,ig <i <y, o< j<Jp re 1<ip, i <m1<jg, jy <O-1 for some preset
0 >0,&>0. This means that Zi i the value of the brightness levels of the image in the predetermined pixels
was in a certain segment. Using boundary conditions, when i =1, 2,...,m from (*) get the system
—421’1' +Zo’j +22,j +21’j_1+21,j+1:—u1’j +Ul,j’
—422’1' +Zl,j +Z3,j +22,j—1+22,j+1 :—UZ’J' +02,j’

—4Z; {471+ Zijt T jat i ="Uij T

g
—A4Zm1,j T Zm-2,j + Zmj T Zm1,j1 + Zm-1,j+1 = ~Um-1,j T Um-1,j

_4Zm,j + Zm—l,j + Zm+1,j + Zm,j—l + Zm,j+1 = —Um’j + Um,j'

Denoting,
T T T
Zj :(Zl,j122,j1'"1zm,j) ,Uj :(ul,j’UZ,jv"’um,j) ,UJ' :(U.I.,j’UZ,j"“1Um,j)
we have
_Zj_1+CZj —ZJ-+1:UJ- _Uj,lg J <6-1,
ZOZO’ZGZO’ (**)
where  Zj € R™ u U; — pursuer control parameter;0j — escape player control parameter:

u; e Rm,uj eR" components that satisfies the condition, ‘ui,j‘ Sp,‘ui,j‘ <o,0<p, and C— Jacobi

square - three-diagonal matrix [2]
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M < R™ the terminal set that the game ends.

The tasks of pursuit and escape for various classes of differential and discrete games are the subject of nu-
merous studies [4-16]. General questions of the theory of discrete games are considered in monographs [4], [5].
In [6], discrete differential games with information lag were studied, in [7] - [10], the relationship between differ-
ential games with distributed parameters and discrete ones was studied. The pursuit and escape problems for linear
discrete games were studied in [11] - [14], the escape problem for nonlinear discrete games was studied in [15],
[16]. In these papers, the motion of points is described by discrete first-order equations.

The purpose of this work is to study a new class of game problems with discrete second-order equations. For
this class of discrete games, sufficient conditions are obtained for the possibility of completing the pursuit when
the position of the object is given in the boundary moments. To solve this problem, Chebyshev polynomials of the
second kind are used [2], [3].

2.PROBLEM STATEMENT
Instead of the game (**), we will consider a more general discrete game, which is point motion Z m di-
mensional Euclidean space R™ described by equations

—Zj_1+CZJ'—ZJ'+1:Uj—Uj,1Sjge—l, (D)

Zo=¢. 2o =9 @

where | - step number, C —mXxm - constant square matrix, U, v - control parameters, U - chase parameter,
U - escape parameter, U; € Pc Rm,uj €QcR™, P and Q - non-empty sets, parameter U selected as a

sequence u=u(.)=(u1,u2,...,u6,71),uj eP,j=12,..,0-1 parameter ©» - as a sequence
v=o()=(v,0y,...,Up_1),0j €Q, j=12,...,0 —1. Inaddition, in R™ allocated terminal set M

Purpose of the pursuing player Zj on the set M , fleeing player tends to put it.

Definition. We will say that in the game (1), (2) from the "boundary" position ((50 , (59) can complete the
persecution for N<@ steps, if in any order Uy,0,,...,UpN_1 escape control can build such a sequence
Uy, U,,...,Uy_q prosecution management, what's the solution z = z(.) =(2q, 71, Z5, ..., Zy_1, Zy ) the equa-
tions

—Zj_1+CZJ' _Zj+1:uj —Uj , 1< J <N —1,
Zy=0y. 2y =Py,
with some d <N hison M :Z, e M.

Let a discrete game be described by equations (1), (2). Through - U, (X) denote the Chebyshev polynomial
of the second kind of degree N .
sin(n+1)arccos x

- sinarccos X
U” X)= n+1
—(n+1)
;{(X+\/X2 —1) —(x+\/x2 —1) } | x|>1.
24x% -1

From here you can easily get the following: U_, (X) =-1, U_1(X) =0, Uy(x) =1, U;(x) = 2X, etc.
In the monographs [2], [3] there are the following recurrence relations

| x[<1

®)

Un2(X) =2xUp 1 (X)-Up(x), N2 0,
Up(x) =1, U,(x) = 2x. 4)
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Further we denote by U, (X) Chebyshev matrix polynomial from a matrix X , determined by the recurrence

formulas (4). From here from (3), (4) we get: U_»,(X)=E, U_;(X) =0, Uo(X)=E, Uy (X)=2X,

where E —single, and O — zero matrix. Letbe 0T =T(j) = uj, 0 =0(j)=0j,1< j<N —preset controls.

If matrix C such that Uel(% C) non-degenerate matrix, then solutions of equation (1) with boundary condi-
tions z5 = 50 Zyp= ¢_59 determined by the formula (see [2], chap. L, § 4, equation (46))
(1 1 o 1
Z, :UH—l EC UH—n—l EC ZO+ZUk_1 EC (Uk—l)k) +
k=1
1 (1 1 g1 1
+U9—1(§Cjun—l(icj|:ze+ Zue—k—l(zc (U —v) |- )
k=n

3. FORMULATION OF KEY RESULTS
Assumption 1. M = Mg + My, where M, — linear subspace R™; M, — subset of subspace L - orthog-

onal complement M in R™. Through I1 denote the operation of the orthogonal projection of R™ to L,
and through A+B and AZB - algebraic sum and geometric difference of sets, respectively [17]. Let be
Ml,l + M1’2 = Ml and

n-1
Wia(n) = ZHue_il(%Cjue—n—l(%cjuk—l(%cj(PiQ)_ My
k=l

= 1 1 x
Wio(n) =2, HUHE1(Ecjun—l(zc)ue—k—l(acj(P_Q)_M1,2’ (6)

k=n

1
Inhere U, (ECJ — Chebyshev matrix polynomial.

Assumption 2. Let there be such N =Ny <@ -1, that

4 (1 1
I {ugil (EC]U g_no_l(zcj zo} €Wy (n)

(1 1
—H{U9—1 (EC)U%&(ECJZ&} €W, (ng).- )
Theorem 1. If assumptions 1, 2 are fulfilled, then in the game (1), (2) from the “boundary” position (Zo, 29)
may complete the pursuit of N(zg,2y) <ng steps. Letbe 1<n<8—-1, W, ;(0) =—My1, W, , =—M »,

Wor(n)= N |Wou(n—1)+TIUgY (%Cjue—n—l (ECJUH (%CJ(P - U(k))} ,

and

v(k)eQ 2
1<k<n-1,
1 (1 1 1
Woa= vvz,z(n—1)+Hue_l(—CJUn_l(—CJUQ_k_l(—Cj(P—u(k))}.
v(k)eQ| 2 2 2
n<k<@-1. (8)

Assumption 3. Let there be such N =ny <& -1, that

4 (1 1
Ry {u Hﬁl(acju g_no_l(icj zo} €W, (ng)

and
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1 (1 1
_H{Uﬁfl(icjuno—l(gcjze} €W, >(ng)- ©)

Theorem 2. If assumptions 3 are fulfilled, then in the game (1), (2) from the “boundary” position (ZO, 29)

may complete the pursuit of N (Zg,zp) < ng steps.

-1
yers o, (+) ={ey,ay,..., 0,1 0 20, Za(k):l},
k=1

o1
Ba () ={Bn: Basase s Boa i B 20, kg Bk) =1}

and

=t (1 1 1 \
Wi, (1)) = kZ oMy +1Up5 (Ecjuﬁ—n—l (_Cjuk—l (—Cj P =
)

2 2
“TUg4 (%Cjue—n—l (%Cjuk—l (%CJQ}
s (1 1 1 .
W, (4, () = k; Kﬁkmm +HU0_1(EC]Un_l(ECjUQ_k_l(ECJP]—

3HU531(%CjUn_l(%CjUg_k_lech}-

W5,(0) =My, Way(n) = aU( )Wl(ak (+)),1<k<n-1,
e

Set

W;,(0) = M; 5, W3 5(n) = ﬂU( )Wl(ﬁk (1), 1<k<o-1. (10)
(-

Assumption 4. Let there be what N =ny <@ —1, what

(1 1
-1 |:U651 (Ecjue—no—l (EC] Zo} eWsz1 (),

1 (1 1
—H{Uefl(icjuno—l(icjzo} €W3;(n). (11)

Theorem 3. If assumptions 4 are fulfilled, then in the game (1), (2) from the “boundary” position (Zo, 29)
may complete the pursuit of N(Zg,zg) < ng steps.

4. CONCLUSION
Summarizing the obtained results, we conclude that the discrete pursuit game (1), starting from the “bound-

ary” position (2) Zr\rer:@ , can be finished for N (ZO, 29) <Ny steps. Thus, to solve the game problem of

pursuit of the form (1), (2), we used the Chebyshev polynomials of the second kind of the form (3) and the recurrent
relation (4), the formula (5). The set (6) is a discrete analogue of the so-called first integral of L. S. Pontryagin
[17], the inclusion of (7) gives the first sufficient conditions for the possibility of completing the pursuit of the
task. The set (8) is a discrete analog of the second integral of L. S. Pontryagin, the inclusion of (9) gives the second
sufficient conditions for the possibility of completing the pursuit of the task. Set (10) is a discrete analogue of the
third method of N. Yu. Satimov [14], and the inclusion of (11) gives the third sufficient conditions for the possi-
bility of completing the game. In Theorems 1-3, sufficient conditions are obtained for solving the corresponding
problems in this form. It should be noted that many problems of mathematical physics can be approximated using
problem (1), (2).
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ATTACHMENT
Proof of Theorem 1. From (6) and (7) it follows that such

N nu;&l(%cjug_no_l(chuk_l(%cj(P—U(k)), 1<k <ny -1,

v(k)eQ 2
a(k) e
N nu;&lilc)un _1(1Cjug_k_1(le(P—U(k)), ng <k <6-1,
v(k)eQ 2 02 2
b €My, by €My,
that

4 (1 1 Mol
_H{Uﬁ—l(icjue—%—l(zcjZO}: 2. ak)-b,

k=1

(1 1 91
_H{Ugil[ECjUno_l(EC)ZH}Z Z a(k)—bz. (12)

k=ng
Letbe v =0(K), 1<k <@ —1 - arbitrary admissible control of the evader; pursuing player management
u=0(Kk) let's build as a solution to the following equation

1107756 Uy 2 5€ i 5€ (000500,

a(k) = 1<k<ny-1L (13)
nu;&lchuno_lchug_k_l(%cj(n(k)—a(k)).

It is clear that these equations have optional solutionsa(k), because D(k)eQ and U(k)eP.

Substituting v = =0 (k) and u =0, =U(K) in (1) and applying the formula (5), will get

np—1
z(no) =U5}1(%Cjue—no—1(%cj{zo + 2 Uk—l(%cj(ﬁk — ):IJF
k=

4 (1 1 g1 1), _
+Upy EC U, EC Zo+ 2 Uga EC (O =) |-
k=n0

Hence, applying to both sides of the equality the design projection operator and from equality (12), (13), we
have
(1 1 ot 1 1
z(ng) =T1| U4 | =C Uy, _ Zo+ Y UL =C Uy 4| =C |-
(o) [91[2j9n01(2j0 Z (2 0-n-1| 5

.uk_l(%cj(uk_5k)}n{ug}l(%cju%_{%cjzg+

{z;ugll@cju%l@cjug“@c)@ak)}
_n{u (2 jug_no_l( jzo}ffa(kn

BTCS Y O X TR

ol ool (1)

NP
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—H{Ugil(%CjUno_l(%CjZO:|+b2 :b1+b2 S M1,1+M1’2 = Ml'

From this inclusion we get that I1z(ny) € M and, means, z(ny) € M . Q.E.D.
Proof of Theorem 2. By the condition of the theorem and from (8), (9) there are such vectors

nu;&l(%cjug_%_{%cj@—u(k)), 1<k <ny-1,

a(k) e

U,y [%C)Uno—l [%Cjug_k_{%cj(P—u(k)), ng<k<6-1,

and b € M1,1’ b, M1,2' that

_n{ugil GCJUQ_nO_l (%Cj zo} eW,1(n)+a(ny - +a(ng—2)+...+a(n),

1<n<ny-1,

_n{ugflecjuno_lecjzg} eW,,(n)+a(@-D+a(@-2)+...+a(n),n<n<o-1.

From here we get that

4 (1 1 ol
_n{ug_1 (Ecjug_no_l (—cj zo} = kZ_l a(k)—by ,

2
4 (1 1 g1
_H{Ug_1 (Ecjuno_l (ECJZQ} = > a(k)—b,. (14)
k=ng
Now let v =0, =0(K), 1<Kk <8 —1 - arbitrary admissible control of the evader; control of the pursuing

player u =10, =U(k), U(k) € P are constructed as solutions of the following equation

U4 (%cjug_no_l (%Cj(ﬁ(k) ~o(k)), 1<k <ng -1,
a(k) = (15)

nu;&l(%cjuno_l(%c)ug_k_l(%cjw(k)—U(k)), ny <k <6-1.

Substituting U =0, =U(K), v =0, =0(K) in (1), (2), considering (14), (15) and simultaneously apply-
ing formula (5) and the design operator, we have

(1 1 (1 1
Mz(ng) =TT Up=y| 2C Upnya| 5C 20+ 2. Yo 5C Yon1| 5C
k=1

.Uk_l(%cj(uk —ak)}H{U;}l(%cjuno_lecjze+
’ 92_1 Ug}l(%CJU”0—1(%Cjua—k—1(%cj(ﬁk — U )} =

kzno
np—1
=11 u;&l[lcjug_no_l(lc)zo + Y a(k)+
2 2 k=1

6-1
+H|:U5}1(%Cjuno_1(%C)ZO:|+ Z a(k) = b_|_+b2 (S Ml,1+ M1,2 = Ml'

k:no
From here we get that Z(Ny) € M . Theorem 2 is proved.
Proof of Theorem 3. Instead of inclusion (11), bearing in mind (10), we consider the equivalent inclusion
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_n{u;}{%cjug_no_l[%cjzo} W, (@ (),
_n{u;}l@cjuno_l(%cjze} Wy (B ().

existence oy (-) ={n, ..., 0 1}, Bﬂo ) ={,5’n0,,3n0+1, ..y B4} follows from (11).
From here we get

(1 1 =2 _ 1 (1 1
—I1 U9—1 EC UH—nO—l EC ZO (S lé_ C(le’l‘i‘HU‘g_l EC UH—nO—l EC X
1 * 1 1 1
i 2K
_ 1(1 1 1 *
o b )

* 1 (1 1 1
e SIS "

(L 1 Sz 1 (1 1
—I1 Ug,l EC Unofl EC Ze € Z ﬂle,2+HU(971 EC Un071 EC X
k:n0+1
1 * -1 1 1 1
xU ~C |P-TIU —C U —c|u Ic +
6’—k—1(2 j 0—1(2 j no—l(2 j H—k—l(z jQ}
—_ _ 1 1 1 .
+(ﬁn0M1,2 +HU€E]'(ECJU”0_1(EC).Ug_no_l(zcjPj_
* — 1 1 1
#0256 Jon 3¢ Joona 3¢
Now let Dy, Dy, ..., Up_1, U €Q, 1<k <@ —1 arbitrary sequence. By virtue of (16) there is such 1
— 1 l _ 1 1
_H|:UHE1(§CJU9_HO_1(ECJZoj|+HU9E1(ECJU0_HO_1(ECJX

1.\ =2 _ 1 (1 1 1 .
XUnO_2 EC Uno_le z akM1’1+HUO_1 EC UH—nO—l —C Uk—l EC P-

and Eno that

k=1 2

TV, (%Cjue—no—1 (%C]'Uk—l (%C]Q}

_ 4 (1 1 1
("‘ano—lMl,l +T1U,Y (Ecjue—no—l (EC]U%—Z (Ecj Pj’ (17)

(1 1 q (1 1 1
11 {Uail (EC)UnO—l [Ecj Ze}rnugh (ECjUno_l (Ecjue—no—l (Ecjx

o ea_ (1 . . *
XOp € D, | BcMip+T1Up5 EC Una| € [Uoka EC px

k:no"rl 2

* (1 1 1
_HUQE]_ (ECjUnO_l (ECjUg_k_l (ECJQ:|+
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= (1 1 1
+(ﬂn0M1’2 +HU9_1 (EC]UHO_]_ (ECJ'Ug_nO_l (EC] Pj
Control U, 4 € P and Uy, € P let's build as a solution to the following equation

(1 1 1)
HugEl(Ec)ue_no_l(zcjuno_z (ECJUHO_1+

1 (1 1 1 _\_ _
+HU6&1 (ECJUH_nO_l (ECjUno_z (EC]UnO_l = ano_lal , € Ml,l’

(1 1 1)
Hugﬁl(ECJuno_l(Ec)ug_no_l (ECJU”O +

(1 1 1
+HU6&1[Ecjuno—l(_cjuﬁ—no—l( jUnO Prbr by eMy,.
Further, by virtue of (11) and (17) we have
1 (1 1 g2
_HUG—l(EC)UH—nO—l(EC]Zl + 2 | &My +11U, 1(

N~

2 2
c)
k=l
1 1 * 1 1 _
'Ue—no—l(EC)Uk—l(ECjP—HU9—1(§CJU9—%—1(2 Ukl jQ}rano—lal.

a(1 1 o Y _
—Hutg}l (ECjUno_l (ECJ 29_1i|+ Z |:ﬁkM1,2 +HU9}1 (EC)

k=n0+1

Up1 (%Cjue—k—l (%Cj PiHUéil(%C)U np-1 (%Cjue—k—l(%CjQ}rﬁnobl-

Similarly, if control Dno_z, Dno 41 becomes known, then the above described method can be constructed to
control Up 5, Uy 41, providing inclusion

(1 1 3 _ 1 (1
—HU9_1 EC UH—nO—l EC 22 S Z akI\/I1]1+HU‘9_1 EC .

k=1

1 1 * 1 1 1

+C_¥n071al + 6_¥n072a2 s a2 (S Ml,l’

(1 1 ) (1
—H[Ueil(zcjuno—l(Ecjze—z}E )3 {ﬁle,Z"'HUHEl(ECJ'
k:n0+l

1 1 w1 (1 1
.uno_l(icjue_k_l(acjP—Hugil(Ecjuno_lbcjug_k_l[gch}+

+,Bn0b1+ﬁno+lb2’ b, €My,

etc. so get

l_IZno = (5%_18.1 + §n0—2a2 +...+ &18.“0 )+ (:Bnobl + :Bn0+1b2 +...t ﬂn0+9—1b9—1) €

€ (§n0—1 +ap, 2.t 51) My4 +(,3n0 + P+ +---+ﬁn0+0—1) My2 =My +Mp =My,
from here we have

Zp, €M .
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The theorem is proven completely. Comment. If in (*) the game is considered finished when the average

value

h=ig+A4 h=Jg+u

Zi,j’iOSiSil’josjsjl:Z:_ -
o

; Zi j 1<ig,h <M< jo, y <6-1
Jo

satisfies the condition & <Z <+ &. Then a corresponding change can easily generalize Theorems 1-3.
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DISCRETE PLAYING OF PERSECUTION WITH LEVEL OF BRIGHTNESS OF DIGITAL
IMAGE DESCRIBED BY SECOND ORDER EQUATIONS

Mamatov M.SH.

The work is devoted to the study of a class of discrete pursuit games with a digital image level, which is
described by systems of second-order equations. Sufficient conditions are obtained for the possibility of complet-
ing the pursuit in discrete games with boundary conditions. When solving the problem of pursuit with the level of
a digital image, Chebyshev polynomials of the second kind are used.

Keywords: pursuit, pursuer, evader, terminal set, pursuit control, evasion control
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